首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the inclusion of Mo, Nb and Ta in Pt and PtRu carbon supported anode electrocatalysts on CO tolerance in proton exchange membrane fuel cells (PEMFC) has been investigated by cyclic voltammetry and fuel cell tests. CO stripping voltammetry on binary PtxM/C (M: Mo, Nb, Ta) reveals partial oxidation of the CO adlayer at low potential, with PtMo (4:1)/C exhibiting the lowest value. At 80 °C, the operating temperature of the fuel cell, CO oxidation was observed at potentials close to 0 V versus the reversible hydrogen electrode (RHE). No significant difference for CO electro-oxidation at the lower potential limit, compared to PtRu/C, was observed for PtRuMy/C (M: Mo, Nb). Fuel cell tests demonstrated that while all the prepared catalysts exhibited enhanced performance compared to Pt/C, only the addition of a relatively small amount of Mo to PtRu results in an electrocatalyst with a higher activity, in the presence of carbon monoxide, to PtRu/C, the current catalyst of choice for PEM fuel cell applications.  相似文献   

2.
The turnover rate (TOR, normalized to sites measured by CO chemisorption before reaction) and selectivity for the aqueous phase reforming of glycerol have been determined for Pt/C and PtMo/C catalysts. While the TOR of PtMo/C is higher than that of Pt/C by about 4 times at comparable conversion, the selectivity to C–O bond cleavage is higher, thus reducing the H2 yield at high conversion. Under reaction conditions on Pt/C, CO is observed as the most abundant Pt surface species with a fractional coverage of about 0.6 using operando X-ray absorption spectroscopy. Since there is little CO in the effluent (CO2:CO ratios > 100:1, when CO is detected), it is thought that surface CO is converted to H2 and CO2 by the water gas shift reaction. DFT calculations suggest that the role of metallic Mo is to alter the electronic properties of Pt lowering the binding energy of CO and reducing the activation energies of dehydrogenation and C–O bond cleavage. Because the activation energy for C–O cleavage is lowered more than for dehydrogenation, the selectivity for C–O bond cleavage is increased, ultimately lowering the H2 yield compared to Pt/C.  相似文献   

3.
The electrocatalysis of CO tolerance of Pt/C, PtRu/C, PtFe/C, PtMo/C, and PtW/C at a PEM fuel cell anode has been investigated using single cell polarization and online electrochemical mass spectrometry (EMS) measurements, and cyclic voltammetry, X-ray diffraction (XRD), in situ X-ray absorption near edge structure (XANES) analyses of the electrocatalysts. For all bimetallic electrocatalysts, which presented higher CO tolerance, EMS results have shown that the production of CO2 start at lower hydrogen electrode overpotentials as compared to Pt/C, confirming the occurrence of the so-called bifunctional mechanism. On the other hand, XANES results indicate an increase in the Pt 5d-band vacancies for the bimetallic catalysts, particulary for PtFe/C, this leading to a weakening of the Pt-CO bond, helping to increase the CO tolerance (the so-called electronic effect). For PtMo/C and PtRu/C supplied with H2/CO, the formation of CO2 is observed even when the cell is at open circuit, confirming some elimination of CO by a chemical process, most probably the water gas shift reaction.  相似文献   

4.
A carbon supported PtMo aqueous phase reforming catalyst for producing hydrogen from glycerol was characterized by analysis of the reaction products and pathway, TEM, XPS and XAS spectroscopy. Operando X-ray absorption spectroscopy (XAS) indicates the catalyst consists of bimetallic nano-particles with a Pt rich core and a Mo rich surface. XAS of adsorbed CO indicates that approximately 25% of the surface atoms are Pt. X-ray photoelectron spectroscopy indicates that there is unreduced and partially reduced Mo oxide (MoO3 and MoO2), and Pt-rich PtMo bimetallic nano-particles. The average size measured by transmission electron microscopy of the fresh PtMo nano-particles is about 2?nm, which increases in size to 5?nm after 30?days of glycerol reforming at 31?bar and 503?K. The catalyst structure differs from the most energetically stable structure predicted by density functional theory (DFT) calculations for metallic Pt and Mo atoms. However, DFT indicates that for nano-particles composed of metallic Pt and Mo oxide, the Mo oxide is at the particle surface. Subsequent reduction would lead to the experimentally observed structure. The aqueous phase reforming reaction products and intermediates are consistent with both C?CC and C?COH bond cleavage to generate H2/CO2 or the side product CH4. While the H2 selectivity at low conversion is about 75%, cleavage of C?COH bonds leads to liquid products with saturated carbon atoms. At high conversions (to gas), these will produced additional CH4 reducing the H2 yield and selectivity.  相似文献   

5.
Electrocatalysis of CO tolerance and direct methanol oxidation on PtMo/C (3:1 a/o) has been investigated in a PEM fuel cell environment. While a 3-fold enhancement is observed for CO tolerance when compared with PtRu/C (1:1), no such enhancement occurred for methanol oxidation. In situ XAS at the Pt L and alloying element K edges for Pt/C, PtRu/C and PtMo/C showed that in contrast to PtRu/C, both Mo and Pt surfaces play a distinct role for CO oxidation. While on the Ru surface there is a competition between oxide formation (from activation of water) and CO adsorption, Mo oxide surface showed no affinity for CO. This provided for efficient CO oxidation at low overpotentials on PtMo/C. However, the corresponding behavior for methanol oxidation showed that Mo oxy-hydroxides were inhibited from efficient removal of CO and CHO species in contrast to Ru oxides. The Mo surface oxides also showed a redox couple involving (V to VI) oxidation states in the presence of both CO and methanol.  相似文献   

6.
Amorphous Pd0.35Zr0.65 alloys prepared by a melt—quench technique were investigated for their possible use as water electrolysis cathodes. The Tafel—Volmer reaction route of the hydrogen electrode reaction was concluded. Kinetic parameter values of the constituent steps were evaluated by a transient technique. The electrocatalytic activity for cathodic hydrogen evolution on the as-obtained electrode was 102 times lower than Pd foil electrodes, but it was improved after the electrodes were treated in acids, typically aqueous HF. The activity in the highest state exceeds that of Pd by one order of magnitude. SEM and XPS observations indicated that the improvement in activity is due to increased surface Pd concentration after removal of a Zr-enriched surface layer which was produced during fabrication of the amorphous alloy specimens. Crystalline alloy electrodes prepared by heat treatment of the amorphous alloy were very brittle but showed electrocatalytic activity close to that of the amorphous electrodes.  相似文献   

7.
The factors controlling the behavior and the stability of electrocatalysts based on Pt, Ru and Mo nanoparticles during exhaustive electrochemical treatment are examined. Along this treatment, it has been observed that in the case of ternary catalysts there are pronounced changes in the structure of their surface resulting in electrode activation for methanol and CO electrooxidation, whereas the activity of binary PtRu/C and PtMo/C catalysts decreases. Therefore, the role of both Ru and Mo is crucial for the electrochemical activation of the catalyst, though metal losses do occur during electrochemical process. For the first time a detailed study of this phenomenon is presented, including characterization by HRTEM, TXRF, XRD, electrochemical measurements and in situ Fourier transform infrared spectroscopy (FTIR). In order to get a deeper insight into the surface structure, chemical state, and stability of the electrocatalyst under reaction conditions, a combination of cyclic voltammetry, chronoamperometry and X-ray photoelectron spectroscopy (XPS) has been used. By comparing bulk and surface composition, our results point out to the key role of the geometric effect enhanced by previous reduction of the nanoparticles. At the end of the electrochemical treatment, Mo-PtRu/C catalysts surface was restructured with substantial enrichment in Pt and a less pronounced Mo surface enrichment, while Ru is incorporated into the Pt-Mo overlayer. These results underline the possibility of further optimization of the surface structure and composition producing PtRuMo nanoparticles with high methanol and CO oxidation activity.  相似文献   

8.
In this work, Pt nanowire networks supported on high surface area carbon (Pt NWNs/C) are synthesized as electrocatalysts for direct methanol fuel cells (DMFCs). The electrocatalytic behavior of Pt NWNs/C catalysts for the methanol and adlayer CO oxidation reactions is investigated and the results are compared with the Pt nanoparticles (NPs) supported on carbon (Pt NPs/C). The results indicate that Pt NWNs are characterized by interconnected nanoparticles with large number of grain boundaries, downshifted d-band center and reduced oxophilicity, which results in the enhanced surface mobility of oxygen-containing species such as COads and OHads. The enhanced surface mobility of COads and OHads in turn facilitates the removal of intermediate CO species during the methanol oxidation. The activity of the Pt NWNs/C electrocatalyst for the methanol oxidation reaction and electrooxidation of adsorbed CO is also evaluated by cyclic voltammetry, CO stripping, and kinetic analysis. The results show that Pt NWNs/C catalysts have a significantly higher electrocatalytic activity for the methanol oxidation reaction as compared to Pt NPs/C catalysts. The enhanced electrocatalytic activity of Pt NWNs/C catalysts is mainly due to the existence of large number of the grain boundaries of the interconnected nanoparticles of the unique Pt NWN structure.  相似文献   

9.
Nickel electrodes were prepared by electrodeposition in electrolytes of various anionic compositions. The deposition conditions and bath types were evaluated with special emphasis on the electrocatalytic properties for the oxygen evolution reaction (OER). Electrochemical characterizations in a 5 mol/L KOH solution at 25°C showed that the electrode deposited from the chloride bath, having a low Tafel slope of 50 mV/dec and an overpotential of 396 mV at 100 mA/cm2, is the most catalytically active among electrodes prepared in electrolytes of various anionic compositions. The electrode activity for the OER is related to the real surface areas, which depend on the anion compositions in the deposition bath and the deposition conditions.  相似文献   

10.
Film-type electrodes of hydrogen absorbing intermetallic compound and alloys, LaNi5, Ni0.11 Ti0.89, Ni0.50 Ti0.50 and Ni0.76 Ti0.24 were prepared by a flash evaporation method. The hydrogen electrode reaction characteristics of the LaNi5 and NiTi alloy films in 1 M NaOH are very similar to each other. The reaction proceeds via the Volmer-Tafel reaction route with mixed rate-determining characteristics. The exchange current densities of the constituent steps, as well as the overall reaction, are in the range of 10?6 A cm?2 (true). Surface analysis by an XPS technique has shown that La or Ti on the electrode surface exists as an electrocatalytically innert oxide of La2O3 or TiO2. Close similarities of these electrodes with pure Ni electrodes indicate that Ni is responsible for the electrocatalytic activity. No synergistic effect is thus noticeable.  相似文献   

11.
The hydrogen evolution reaction (h.e.r.) on electrodeposited nickel from a chemical bath containing Cu2-, with and without PW12O 40 3- , was investigated. Hydrogen cathodes based on nickel-copper alloys and PW12O 40 su3- reduced species are better electrocatalysts in 1 M H2SO4 or 3m KOH at 298 K than nickel-copper alloys deposited without PW12O 40 3- . The electrocatalytic performance of the former cathodes was attributed to their chemical composition. This electrocatalytic activity for the h.e.r. was examined as a function of the [Cu2+] or [PW12O 40 3- ] in the electrodeposition bath. The influence of nickel salt anions on the h.e.r. electrocatalytic activity of the electrodes was also investigated. The chemical surface composition of the electrodes was analysed by X-ray photoelectron spectroscopy (XPS). It was shown that the electrocatalytic parameters were correlated to the quantity of tungsten in the electrode surface. The various factors causing the improvement in the electrocatalytic activity are discussed.  相似文献   

12.
A study on the electrocatalytic performance of Ni/Zn and Ni–Co/Zn alloys for hydrogen evolution reaction (HER) in alkaline media (30 wt.% KOH solution) has been carried out. After preparing by electrodeposition on stainless steel supports, the alloys were leached of to remove part of the zinc and generate a porous layer. For the developed electrodes, the surface roughness factor, Rf, was evaluated by electrochemical impedance spectroscopy (EIS). The HER on these electrodes was evaluated by means of steady-state polarization curves and EIS. The obtained electrodes were characterized by large Rf for HER, and very low overpotentials at the current density of 250 mA cm−2, η250 ∼ 0.138 V at 30 °C. The high electrode activity was mainly attributed to the high surface area of the developed electrodes.  相似文献   

13.
The catalytic activity of hydrogen cathodes based on Ni/Mo coatings prepared in different ways has been investigated under conditions of advanced alkaline water electrolysis in 10m KOH at 100°C, in the current density range 0.05–1.0 A cm–2. The activity of electrodeposited Ni/Mo and Ni/Mo/V coatings was quite low, apparently due to their low effective surface area. The activity of all thermally deposited Ni/Mo coatings, electrodeposited Ni/Mo/Cd coatings and of Raney nickel-Mo alloys has been found to be high. When accompanied by some current interruptions of various durations, however, it successively decreased during long-time electrolysis, especially when the residual potential of the electrode, after the current interruption, approached a certain threshold value. The rate of electrode deactivation depends on its mode of preparation as well as on electrolysis conditions, particularly on conditions during the current interruptions. The Mo content in the coating decreased quickly by a factor of 2–10 under operating values of both Tafel constants. The addition of Mo to the expressed as an increase in the absolute values of both Tafel constants. The addition of Mo to the Raney nickel improves its catalytic efficiency as long as Mo is not dissolved. The enhancing of catalytic activity by Mo in Raney nickel is partly caused by synergetic effects between Ni and Mo, as follows from their electronic structure, and partly by material stabilization as follows from comparison with the Raney nickel (Zn).  相似文献   

14.
A platinum/single-wall carbon nanotube (Pt/SWCNT) film was sprayed onto a flexible indium-doped tin oxide coated polyethylene naphthalate (ITO/PEN) substrate to form a counter electrode for use in a flexible dye-sensitized solar cell using a vacuum thermal decomposition method at low temperature (120 °C). The obtained Pt/SWCNT electrode showed good chemical stability and light transmittance and had lower charge transfer resistance and higher electrocatalytic activity for the I3/I redox reaction compared to the flexible Pt electrode or a commercial Pt/Ti electrode. The light-to-electric energy conversion efficiency of the flexible DSSC based on the Pt/SWCNT/ITO/PEN counter electrode and the TiO2/Ti photoanode reached 5.96% under irradiation with a simulated solar light intensity of 100 mW cm−2. The efficiency was increased by 25.74% compared to the flexible DSSC with an unmodified Pt counter electrode.  相似文献   

15.
Porous TiO2 thin films were prepared on the Si substrate by hydrothermal method, and used as the Pt electrocatalyst support for methanol oxidation study. Well-dispersed Pt nanoparticles with a particle size of 5–7 nm were pulse-electrodeposited on the porous TiO2 support, which was mainly composed of the anatase phase after an annealing at 600 °C in vacuum. Cyclic voltammetry (CV) and CO stripping measurements showed that the Pt/TiO2 electrode had a high electrocatalytic activity toward methanol oxidation and an excellent CO tolerance. The excellent electrocatalytic performance of the electrode is ascribed to the synergistic effect of Pt nanoparticles and the porous TiO2 support on CO oxidation. The strong electronic interaction between Pt and the TiO2 support may modify CO chemisorption properties on Pt nanoparticles, thereby facilitating CO oxidation on Pt nanoparticles via the bifunctional mechanism and thus improving the electrocatalytic activity of the Pt catalyst toward methanol oxidation.  相似文献   

16.
This study describes electrochemical, in situ spectroelectrochemical, and in situ electrocolorimetric monitoring of the electrocatalytic reduction of molecular oxygen and hydronium ion on the phthalocyanine-modified electrodes. For this purpose, electrochemical and in situ spectroelectrochemical characterizations of the metallophthalocyanines (MPc) bearing tetrakis-[4-((4′-trifluoromethyl)phenoxy)phenoxy] groups were performed. While CoPc gives both metal-based and ring-based redox processes, H2Pc, ZnPc and CuPc show only ring-based electron transfer processes. In situ electrocolorimetric method was applied to investigate the color of the electrogenerated anionic and cationic forms of the complexes. The presence of O2 in the electrolyte system influences both oxygen reduction reaction and the electrochemical and spectral behaviors of the complexes, which indicate electrocatalytic activity of the complexes for the oxygen reduction reaction. Perchloric acid titrations monitored by voltammetry represent possible electrocatalytic activities of the complexes for hydrogen evolution reaction. CoPc and CuPc coated on a glassy carbon electrode decrease the overpotential of the working electrode for H+ reduction. The nature of the metal center changes the electrocatalytic activities for hydrogen evolution reaction in aqueous solution. Although CuPc has an inactive metal center, its electrocatalytic activity is recorded more than CoPc for H+ reduction in aqueous solution.  相似文献   

17.
The influence of oxygen gas added to hydrogen in their electrode reactions at the Pt/Nafion interface was investigated using ac impedance method. The electrochemical cell was arranged in either electrolytic (hydrogen enrichment) or galvanic (fuel cell) mode. The impedance spectra of the electrode reaction of a H2/O2 gas mixture were taken in each mode as a function of the gas composition, electrode surface roughness and the cell potential. The spectrum taken for the anodic reaction of electrolytic arrangement confirmed the anodic oxygen reduction reaction (AOR, the local consumption of hydrogen by the added oxygen) by showing an independent arc distinguishable from that for hydrogen oxidation. But the independent arc was not revealed in the spectrum taken on a smooth (low surface area) electrode or on a Pt/C anode of the galvanic cell. At any cell current density, the electrolytic mode showed its anodic overpotential much higher (nearly three times higher at the current density of 100 mA cm−2) than the potential registered in galvanic mode implying that the oxygen gas in the mixture engages more active and independent AOR at the anode of the electrolytic cell.  相似文献   

18.
The preparation of carbon-supported cobalt-tungsten and molybdenum-tungsten carbides and their activity as an anode catalyst for a polymer electrolyte fuel cell were investigated. The electrocatalytic activity for the hydrogen oxidation reaction over the catalysts was evaluated using a single-stack fuel cell and a rotating disk electrode. The characterization of the catalysts was performed by XRD, temperature-programmed carburization, temperature-programmed reduction and X-ray photoelectron spectroscopy. The maximum power densities of the 30 wt% 873 K-carburized cobalt-tungsten and molybdenum-tungsten mixed with Ketjen carbon (cobalt-tungsten carbide (CoWC)/Ketjen black (KB) and molybdenum-tungsten carbide (MoWC)/KB) were 15.7 and 12.0 mW cm−2, respectively, which were 14 and 11%, compared to the in-house membrane electrode assembly (MEA) prepared from a 20 wt% Pt/C catalyst. The CoWC/KB catalyst exhibited the highest maximum power density compared to the MoWC/KB and WC/KB catalysts. The 873 K-carburized CoW/KB catalyst formed the oxycarbided and/or carbided CoW that are responsible for the excellent hydrogen oxygen reaction.  相似文献   

19.
Pt–Mo alloy electrocatalysts were prepared by an arc-melting furnace process to investigate the origin of their enhanced activity toward ethanol oxidation. Two Mo contents were chosen in zones of the binary phase diagram where they are supposed to form either a pure alloy mixture or a solid solution. Pt–Mo alloy catalysts were more active than Pt-alone. Gradual Mo dissolution at the electrode surface was observed after voltammetric and chronoamperometric measurements. The dissolved Mo contributed to the catalytic effect of the electrode as underpotentially deposited (upd) adatoms. This dissolution probably also leads to an increase in the electrode surface roughness. Low molybdenum content in the electrode material enhances the activity toward ethanol oxidation when compared to Pt-alone. Ethanol oxidation was also investigated by in situ infrared reflectance spectroscopy in order to determine the presence of adsorbed intermediates like CO species. Acetaldehyde, acetic acid and CO2 were also found by spectroscopic experiments.  相似文献   

20.
Carbon-supported IrO2 and RuO2 were prepared using an incipient wetness method and were then calcinated at various temperatures. IrO2/C and RuO2/C are less expensive than the conventional Pt/C material and more stable than metal Ni in an acidic electrolyte. Moreover, IrO2/C and RuO2/C are not influenced by under potential deposition (UPD) and show lower sensitivity to poisoning by Ni or Fe impurities. The physical properties of IrO2/C and RuO2/C were investigated via XRD and TEM. Cyclic voltammograms (CV) and Tafel plots were used to provide information regarding surface redox reaction and electrocatalytic activity. The activity and durability of IrO2/C and RuO2/C were studied after prolonged potential cycling between −0.3 and 0.3 VSCE. After comparison of Tafel plots of Pt/C and IrO2/C after activation, it was observed that they have similar electrocatalytic activities in a hydrogen evolution reaction (HER). A single cell test with solid polymer electrolyte (SPE) proved that the performance of IrO2/C (0.5 mg cm−2) was similar to that of Pt/C (0.5 mg cm−2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号