首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Agomelatine, a melatonergic antidepressant with a rapid onset of action, is one of the most recent drugs in the antidepressant category. Agomelatine’s antidepressant actions are attributed to its sleep-promoting and chronobiotic actions mediated by MT1 and MT2 receptors present in the suprachiasmatic nucleus, as well as to its effects on the blockade of 5-HT2c receptors. Blockade of 5-HT2c receptors causes release of both noradrenaline and dopamine at the fronto-cortical dopaminergic and noradrenergic pathways. The combined actions of agomelatine on MT1/MT2 and 5-HT2c receptors facilitate the resynchronization of altered circadian rhythms and abnormal sleep patterns. Agomelatine appeared to be effective in treating major depression. Moreover, evidence exists that points out a possible efficacy of such drug in the treatment of bipolar depression, anxiety disorders, alcohol dependence, migraines etc. Thus, the aim of this narrative review was to elucidate current evidences on the role of agomelatine in disorders other than major depression.  相似文献   

2.
Agomelatine is a naphthalenic analogue of melatonin that is in clinical use for the treatment of major depressive disorders. Interestingly, while agomelatine exhibits potent affinity for melatonin receptors, it binds with only moderate affinity to the serotonin 5‐HT2C receptor. Optimization of agomelatine toward this target could further potentiate its clinical efficacy. To explore this hypothesis and to access derivatives in which a key point of agomelatine metabolism is blocked, a series of naphthalenic derivatives was designed and synthesized as novel analogues of agomelatine. Most of the prepared compounds exhibited good binding affinity at the melatonin MT1 and MT2 receptor subtypes. Two compounds, an acetamide and an acrylamide derivative, exhibited good binding affinities at both the human melatonin (MT) receptors and the serotonin 5‐HT2C receptor subtype, with pKi values of 7.96 and 7.95 against MT1, 7.86 and 8.68 against MT2, and 6.64 and 6.44 against 5‐HT2C, respectively.  相似文献   

3.
Increasing evidence suggests estrogen and estrogen signaling pathway disturbances across psychiatric disorders. Estrogens are not only crucial in sexual maturation and reproduction but are also highly involved in a wide range of brain functions, such as cognition, memory, neurodevelopment, and neuroplasticity. To add more, the recent findings of its neuroprotective and anti-inflammatory effects have grown interested in investigating its potential therapeutic use to psychiatric disorders. In this review, we analyze the emerging literature on estrogen receptors and psychiatric disorders in cellular, preclinical, and clinical studies. Specifically, we discuss the contribution of estrogen receptor and estrogen signaling to cognition and neuroprotection via mediating multiple neural systems, such as dopaminergic, serotonergic, and glutamatergic systems. Then, we assess their disruptions and their potential implications for pathophysiologies in psychiatric disorders. Further, in this review, current treatment strategies involving estrogen and estrogen signaling are evaluated to suggest a future direction in identifying novel treatment strategies in psychiatric disorders.  相似文献   

4.
Serotonin communication operates mainly in the extracellular space and cerebrospinal fluid (CSF), using volume transmission with serotonin moving from source to target cells (neurons and astroglia) via energy gradients, leading to the diffusion and convection (flow) of serotonin. One emerging concept in depression is that disturbances in the integrative allosteric receptor–receptor interactions in highly vulnerable 5-HT1A heteroreceptor complexes can contribute to causing major depression and become novel targets for the treatment of major depression (MD) and anxiety. For instance, a disruption and/or dysfunction in the 5-HT1A-FGFR1 heteroreceptor complexes in the raphe-hippocampal serotonin neuron systems can contribute to the development of MD. It leads inter alia to reduced neuroplasticity and potential atrophy in the raphe-cortical and raphe-striatal 5-HT pathways and in all its forebrain networks. Reduced 5-HT1A auto-receptor function, increased plasticity and trophic activity in the midbrain raphe 5-HT neurons can develop via agonist activation of allosteric receptor–receptor interactions in the 5-HT1A-FGFR1 heterocomplex. Additionally, the inhibitory allosteric receptor–receptor interactions in the 5-HT1AR-5-HT2AR isoreceptor complex therefore likely have a significant role in modulating mood, involving a reduction of postjunctional 5-HT1AR protomer signaling in the forebrain upon activation of the 5-HT2AR protomer. In addition, oxytocin receptors (OXTRs) play a significant and impressive role in modulating social and cognitive related behaviors like bonding and attachment, reward and motivation. Pathological blunting of the OXTR protomers in 5-HT2AR and especially in 5-HT2CR heteroreceptor complexes can contribute to the development of depression and other types of psychiatric diseases involving disturbances in social behaviors. The 5-HTR heterocomplexes are novel targets for the treatment of MD.  相似文献   

5.
The development of neuropathy and of mood alterations is frequent after chemotherapy. These complications, independent from the antitumoral mechanism, are interconnected due to an overlapping in their processing pathways and a common neuroinflammatory condition. This study aims to verify whether in mice the treatment with the proteasome inhibitor bortezomib (BTZ), at a protocol capable of inducing painful neuropathy, is associated with anxiety, depression and supraspinal neuroinflammation. We also verify if the therapeutic treatment with the antagonist of the prokineticin (PK) system PC1, which is known to contrast pain and neuroinflammation, can prevent mood alterations. Mice were treated with BTZ (0.4 mg/kg three times/week for 4 weeks); mechanical allodynia and locomotor activity were evaluated over time while anxiety (dark light and marble burying test), depression (sucrose preference and swimming test) and supraspinal neuroinflammation were checked at the end of the protocol. BTZ treated neuropathic mice develop anxiety and depression. The presence of mood alterations is related to the presence of neuroinflammation and PK system activation in prefrontal cortex, hippocampus and hypothalamus with high levels of PK2 and PKR2 receptor, IL-6 and TNF-α, TLR4 and an upregulation of glial markers. PC1 treatment, counteracting pain, prevented the development of supraspinal inflammation and depression-like behavior in BTZ mice.  相似文献   

6.
Fine temperature control is essential in homeothermic animals. Both hyper- and hypothermia can have deleterious effects. Multiple, efficient and partly redundant mechanisms of adjusting the body temperature to the value set by the internal thermostat exist. The neural circuitry of temperature control and the neurotransmitters involved are reviewed. The GABAergic inhibitory output from the brain thermostat in the preoptic area POA to subaltern neural circuitry of temperature control (Nucleus Raphe Dorsalis and Nucleus Raphe Pallidus) is a function of the balance between the (opposite) effects mediated by the transient receptor potential receptor TRPM2 and EP3 prostaglandin receptors. Activation of TRPM2-expressing neurons in POA favors hypothermia, while inhibition has the opposite effect. Conversely, EP3 receptors induce elevation in body temperature. Activation of EP3-expressing neurons in POA results in hyperthermia, while inhibition has the opposite effect. Agonists at TRPM2 and/or antagonists at EP3 could be beneficial in hyperthermia control. Activity of the neural circuitry of temperature control is modulated by a variety of 5-HT receptors. Based on the theoretical model presented the “ideal” antidote against serotonin syndrome hyperthermia appears to be an antagonist at the 5-HT receptor subtypes 2, 4 and 6 and an agonist at the receptor subtypes 1, 3 and 7. Very broadly speaking, such a profile translates in a sympatholytic effect. While a compound with such an ideal profile is presently not available, better matches than the conventional antidote cyproheptadine (used off-label in severe serotonin syndrome cases) appear to be possible and need to be identified.  相似文献   

7.
There is a growing interest in the role of alterations in mitochondrial metabolism in the pathoetiology and pathophysiology of cancers, including within the array of diverse cells that can form a given tumor microenvironment. The ‘exhaustion’ in natural killer cells and CD8+ t cells as well as the tolerogenic nature of dendritic cells in the tumor microenvironment seems determined by variations in mitochondrial function. Recent work has highlighted the important role played by the melatonergic pathway in optimizing mitochondrial function, limiting ROS production, endogenous antioxidants upregulation and consequent impacts of mitochondrial ROS on ROS-dependent microRNAs, thereby impacting on patterned gene expression. Within the tumor microenvironment, the tumor, in a quest for survival, seeks to ‘dominate’ the dynamic intercellular interactions by limiting the capacity of cells to optimally function, via the regulation of their mitochondrial melatonergic pathway. One aspect of this is the tumor’s upregulation of kynurenine and the activation of the aryl hydrocarbon receptor, which acts to metabolize melatonin and increase the N-acetylserotonin/melatonin ratio, with effluxed N-acetylserotonin acting as a brain-derived neurotrophic factor (BDNF) mimic via its activation of the BDNF receptor, TrkB, thereby increasing the survival and proliferation of tumors and cancer stem-like cells. This article highlights how many of the known regulators of cells in the tumor microenvironment can be downstream of the mitochondrial melatonergic pathway regulation. Future research and treatment implications are indicated.  相似文献   

8.
Mood disorders are chronic, recurrent diseases characterized by changes in mood and emotions. The most common are major depressive disorder (MDD) and bipolar disorder (BD). Molecular biology studies have indicated an involvement of the immune system in the pathogenesis of mood disorders, and showed their correlation with altered levels of inflammatory markers and energy metabolism. Previous reports, including meta-analyses, also suggested the role of microglia activation in the M1 polarized macrophages, reflecting the pro-inflammatory phenotype. Lithium is an effective mood stabilizer used to treat both manic and depressive episodes in bipolar disorder, and as an augmentation of the antidepressant treatment of depression with a multidimensional mode of action. This review aims to summarize the molecular studies regarding inflammation, microglia activation and energy metabolism changes in mood disorders. We also aimed to outline the impact of lithium on these changes and discuss its immunomodulatory effect in mood disorders.  相似文献   

9.
Wound healing is a complex process that is mediated and influenced by several cytokines, chemokines, and growth factors. Interleukin-22 (IL-22) is a cytokine that plays a critical role in tissue regeneration. Our study is a systematic review that addressed the implications of IL-22 in the healing of wounds caused by external factors. Thirteen studies were included in our review, most of them being experimental studies. Three clinical studies underlined the potential role of IL-22 in day-to-day clinical practice. IL-22 plays a central role in wound healing, stimulating the proliferation, migration, and differentiation of the cells involved in tissue repair. However, overexpression of IL-22 can cause negative effects, such as keloid scars or peritoneal adhesions. The results of the presented studies are promising, but further research that validates the roles of IL-22 in clinical practice and analyzes its potential implication in surgical healing is welcomed.  相似文献   

10.
Major depressive disorder and anxiety disorders are common and disabling conditions that affect millions of people worldwide. Despite being different disorders, symptoms of depression and anxiety frequently overlap in individuals, making them difficult to diagnose and treat adequately. Therefore, compounds capable of exerting beneficial effects against both disorders are of special interest. Noteworthily, vitamin D deficiency has been associated with an increased risk of developing depression and anxiety, and individuals with these psychiatric conditions have low serum levels of this vitamin. Indeed, in the last few years, vitamin D has gained attention for its many functions that go beyond its effects on calcium–phosphorus metabolism. Particularly, antioxidant, anti-inflammatory, pro-neurogenic, and neuromodulatory properties seem to contribute to its antidepressant and anxiolytic effects. Therefore, in this review, we highlight the main mechanisms that may underlie the potential antidepressant and anxiolytic effects of vitamin D. In addition, we discuss preclinical and clinical studies that support the therapeutic potential of this vitamin for the management of these disorders.  相似文献   

11.
Skin pigmentation can occur due to increased melanin, including melanocyte proliferation, melanin biosynthesis, or melanocyte migration. There are many factors that influence the melanin production process, but the role of neurotransmitters in this process is still unclear. We found that histamine and serotonin influence the different stages of melanogenesis and melanogenesis, which increase melanogenesis. Since then, several related papers have been published, and from these papers, it has been recognised that the role of neurotransmitters in skin-pigment-related diseases needs to be summarised. By introducing the role of neurotransmitters in the regulation of various pigment disorders, including vitiligo and melasma, through this review, many researchers can be expected to try to apply neurotransmitter-related agonists and antagonists as treatments for skin pigment disorders.  相似文献   

12.
13.
The serotonin 2C (5‐HT2C) receptor has been identified as a potential drug target for the treatment of a variety of central nervous system (CNS) disorders, such as obesity, substance abuse, and schizophrenia. In this Viewpoint article, recent progress in developing selective 5‐HT2C agonists for use in treating these disorders is summarized, including the work of our group. Challenges in this field and the possible future directions are described. Homology modeling as a method to predict the binding modes of 5‐HT2C ligands to the receptor is also discussed. Compared to known ligands, the improved pharmacological profiles of the 2‐phenylcyclopropylmethylamine‐based 5‐HT2C agonists make them preferred candidates for further studies.  相似文献   

14.
Electroconvulsive therapy (ECT) is based on conducting an electrical current through the brain to stimulate it and trigger generalized convulsion activity with therapeutic ends. Due to the efficient use of ECT during the last years, interest in the molecular bases involved in its mechanism of action has increased. Therefore, different hypotheses have emerged. In this context, the goal of this review is to describe the neurobiological, endocrine, and immune mechanisms involved in ECT and to detail its clinical efficacy in different psychiatric pathologies. This is a narrative review in which an extensive literature search was performed on the Scopus, Embase, PubMed, ISI Web of Science, and Google Scholar databases from inception to February 2022. The terms “electroconvulsive therapy”, “neurobiological effects of electroconvulsive therapy”, “molecular mechanisms in electroconvulsive therapy”, and “psychiatric disorders” were among the keywords used in the search. The mechanisms of action of ECT include neurobiological function modifications and endocrine and immune changes that take place after ECT. Among these, the decrease in neural network hyperconnectivity, neuroinflammation reduction, neurogenesis promotion, modulation of different monoaminergic systems, and hypothalamus–hypophysis–adrenal and hypothalamus–hypophysis–thyroid axes normalization have been described. The majority of these elements are physiopathological components and therapeutic targets in different mental illnesses. Likewise, the use of ECT has recently expanded, with evidence of its use for other pathologies, such as Parkinson’s disease psychosis, malignant neuroleptic syndrome, post-traumatic stress disorder, and obsessive–compulsive disorder. In conclusion, there is sufficient evidence to support the efficacy of ECT in the treatment of different psychiatric disorders, potentially through immune, endocrine, and neurobiological systems.  相似文献   

15.
Anxiety and eating disorders produce a physiological imbalance that triggers alterations in the abundance and composition of gut microbiota. Moreover, the gut–brain axis can be altered by several factors such as diet, lifestyle, infections, and antibiotic treatment. Diet alterations generate gut dysbiosis, which affects immune system responses, inflammation mechanisms, the intestinal permeability, as well as the production of short chain fatty acids and neurotransmitters by gut microbiota, which are essential to the correct function of neurological processes. Recent studies indicated that patients with generalized anxiety or eating disorders (anorexia nervosa, bulimia nervosa, and binge-eating disorders) show a specific profile of gut microbiota, and this imbalance can be partially restored after a single or multi-strain probiotic supplementation. Following the PRISMA methodology, the current review addresses the main microbial signatures observed in patients with generalized anxiety and/or eating disorders as well as the importance of probiotics as a preventive or a therapeutic tool in these pathologies.  相似文献   

16.
The NOD-, LRR-, and pyrin-domain-containing protein 3 (NLRP3) inflammasome is a node of intracellular stress pathways and a druggable target which integrates mitochondrial stress and inflammatory cascades. While a body of evidence suggests the involvement of the NLRP3 inflammasome in numerous diseases, a lack of reliable measurement techniques highlights the need for a robust assay using small quantities of biological samples. We present a literature overview on peripheral activation of the NLRP3 inflammasome in mood disorders, then outline a process to develop and validate a robust assay to measure baseline and activated intracellular levels of “apoptosis-associated speck-like protein containing a CARD” (ASC) as a key component of an inflammatory profile in peripheral blood mononuclear cells (PBMC). A consistent association between high NLRP3 mRNA levels and relevant cytokines was seen in the literature. Using our method to measure ASC, stimulation of PBMC with lipopolysaccharide and nigericin or adenosine triphosphate resulted in microscopic identification of intracellular ASC specks, as well as interleukin 1 (IL-1) beta and caspase-1 p10 in the periphery. This was abolished by dose-dependent pre-treatment with 100 nM MCC950. We also report the use of this technique in a small pilot sample from patients with bipolar disorder and depressive disorders. The results show that levels of intracellular ASC and IL-1 beta are sensitive to change upon activation and maintained over time, which may be used to improve the detection of NLRP3 activation and guide personalized therapeutic strategy in the treatment of patients.  相似文献   

17.
Under stressful conditions, the hypothalamic-pituitary-adrenal (HPA) axis acts to promote transitory physiological adaptations that are often resolved after the stressful stimulus is no longer present. In addition to corticosteroids (e.g., cortisol), the neurosteroid allopregnanolone (3α,5α-tetrahydroprogesterone, 3α-hydroxy-5α-pregnan-20-one) participates in negative feedback mechanisms that restore homeostasis. Chronic, repeated exposure to stress impairs the responsivity of the HPA axis and dampens allopregnanolone levels, participating in the etiopathology of psychiatric disorders, such as major depressive disorder (MDD) and post-traumatic stress disorder (PTSD). MDD and PTSD patients present abnormalities in the HPA axis regulation, such as altered cortisol levels or failure to suppress cortisol release in the dexamethasone suppression test. Herein, we review the neurophysiological role of allopregnanolone both as a potent and positive GABAergic neuromodulator but also in its capacity of inhibiting the HPA axis. The allopregnanolone function in the mechanisms that recapitulate stress-induced pathophysiology, including MDD and PTSD, and its potential as both a treatment target and as a biomarker for these disorders is discussed.  相似文献   

18.
To an exceptional degree, and through multiple mechanisms, the PPARg system rapidly senses cellular stress, and functions in the CNS in glial cells, neurons, and cerebrovascular endothelial cell in multiple anti-inflammatory and neuroprotective ways. We now know that depression is associated with neurodegeneration in the subgenual prefrontal cortex and hippocampus, decreased neuroplasticity, and defective neurogenesis. Brain-derived neurotrophic factor (BDNF) is markedly depleted in these areas, and is thought to contribute to the neurodegeneration of the subgenual prefrontal cortex and the hippocampus. The PPARg system strongly increases BDNF levels and activity in these brain areas. The PPARg system promotes both neuroplasticity and neurogenesis, both via effects on BDNF, and through other mechanisms. Ample evidence exists that these brain areas transduce many of the cardinal features of depression, directly or through their projections to sites such as the amygdala and nucleus accumbens. Behaviorally, these include feelings of worthlessness, anxiety, dread of the future, and significant reductions in the capacity to anticipate and experience pleasure. Physiologically, these include activation of the CRH and noradrenergic system in brain and the sympathetic nervous system and hypothalamic–pituitary–adrenal axis in the periphery. Patients with depression are also insulin-resistant. The PPARg system influences each of these behavioral and physiological in ways that would ameliorate the manifestations of depressive illness. In addition to the cognitive and behavioral manifestations of depression, depressive illness is associated with the premature onsets of coronary artery disease, stroke, diabetes, and osteoporosis. As a consequence, patients with depressive illness lose approximately seven years of life. Inflammation and insulin resistance are two of the predominant processes that set into motion these somatic manifestations. PPARg agonists significantly ameliorate both pathological processes. In summary, PPARg augmentation can impact positively on multiple significant pathological processes in depression. These include loss of brain tissue, defective neuroplasticity and neurogenesis, widespread inflammation in the central nervous system and periphery, and insulin resistance. Thus, PPARg agonists could potentially have significant antidepressant effects.  相似文献   

19.
Melatonin is a new plant hormone involved in multiple physiological functions in plants such as germination, photosynthesis, plant growth, flowering, fruiting, and senescence, among others. Its protective role in different stress situations, both biotic and abiotic, has been widely demonstrated. Melatonin regulates several routes in primary and secondary plant metabolism through the up/down-regulation of many enzyme/factor genes. Many of the steps of nitrogen metabolism in plants are also regulated by melatonin and are presented in this review. In addition, the ability of melatonin to enhance nitrogen uptake under nitrogen-excess or nitrogen-low conditions is analyzed. A model that summarizes the distribution of nitrogen compounds, and the osmoregulation and redox network responses mediated by melatonin, are presented. The possibilities of using melatonin in crops for more efficient uptake, the assimilation and metabolization of nitrogen from soil, and the implications for Nitrogen Use Efficiency strategies to improve crop yield are also discussed.  相似文献   

20.
The endogenous amino acids serine and aspartate occur at high concentrations in free D-form in mammalian organs, including the central nervous system and endocrine glands. D-serine (D-Ser) is largely localized in the forebrain structures throughout pre and postnatal life. Pharmacologically, D-Ser plays a functional role by acting as an endogenous coagonist at N-methyl-D-aspartate receptors (NMDARs). Less is known about the role of free D-aspartate (D-Asp) in mammals. Notably, D-Asp has a specific temporal pattern of occurrence. In fact, free D-Asp is abundant during prenatal life and decreases greatly after birth in concomitance with the postnatal onset of D-Asp oxidase expression, which is the only enzyme known to control endogenous levels of this molecule. Conversely, in the endocrine system, D-Asp concentrations enhance after birth during its functional development, thereby suggesting an involvement of the amino acid in the regulation of hormone biosynthesis. The substantial binding affinity for the NMDAR glutamate site has led us to investigate the in vivo implications of D-Asp on NMDAR-mediated responses. Herein we review the physiological function of free D-Asp and of its metabolizing enzyme in regulating the functions of the brain and of the neuroendocrine system based on recent genetic and pharmacological human and animal studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号