首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Agomelatine, a melatonergic antidepressant with a rapid onset of action, is one of the most recent drugs in the antidepressant category. Agomelatine’s antidepressant actions are attributed to its sleep-promoting and chronobiotic actions mediated by MT1 and MT2 receptors present in the suprachiasmatic nucleus, as well as to its effects on the blockade of 5-HT2c receptors. Blockade of 5-HT2c receptors causes release of both noradrenaline and dopamine at the fronto-cortical dopaminergic and noradrenergic pathways. The combined actions of agomelatine on MT1/MT2 and 5-HT2c receptors facilitate the resynchronization of altered circadian rhythms and abnormal sleep patterns. Agomelatine appeared to be effective in treating major depression. Moreover, evidence exists that points out a possible efficacy of such drug in the treatment of bipolar depression, anxiety disorders, alcohol dependence, migraines etc. Thus, the aim of this narrative review was to elucidate current evidences on the role of agomelatine in disorders other than major depression.  相似文献   

2.
Agomelatine is a naphthalenic analogue of melatonin that is in clinical use for the treatment of major depressive disorders. Interestingly, while agomelatine exhibits potent affinity for melatonin receptors, it binds with only moderate affinity to the serotonin 5‐HT2C receptor. Optimization of agomelatine toward this target could further potentiate its clinical efficacy. To explore this hypothesis and to access derivatives in which a key point of agomelatine metabolism is blocked, a series of naphthalenic derivatives was designed and synthesized as novel analogues of agomelatine. Most of the prepared compounds exhibited good binding affinity at the melatonin MT1 and MT2 receptor subtypes. Two compounds, an acetamide and an acrylamide derivative, exhibited good binding affinities at both the human melatonin (MT) receptors and the serotonin 5‐HT2C receptor subtype, with pKi values of 7.96 and 7.95 against MT1, 7.86 and 8.68 against MT2, and 6.64 and 6.44 against 5‐HT2C, respectively.  相似文献   

3.
The pineal hormone melatonin has attracted great scientific interest since its discovery in 1958. Despite the enormous number of basic and clinical studies the exact role of melatonin in respect to human physiology remains elusive. In humans, two high-affinity receptors for melatonin, MT1 and MT2, belonging to the family of G protein-coupled receptors (GPCRs) have been cloned and identified. The two receptor types activate Gi proteins and MT2 couples additionally to Gq proteins to modulate intracellular events. The individual effects of MT1 and MT2 receptor activation in a variety of cells are complemented by their ability to form homo- and heterodimers, the functional relevance of which is yet to be confirmed. Recently, several melatonin receptor genetic polymorphisms were discovered and implicated in pathology—for instance in type 2 diabetes, autoimmune disease, and cancer. The circadian patterns of melatonin secretion, its pleiotropic effects depending on cell type and condition, and the already demonstrated cross-talks of melatonin receptors with other signal transduction pathways further contribute to the perplexity of research on the role of the pineal hormone in humans. In this review we try to summarize the current knowledge on the membrane melatonin receptor activated cell signaling in physiology and pathology and their relevance to certain disease conditions including cancer.  相似文献   

4.
Several melatonin receptors agonists (ramelteon, prolonged-release melatonin, agomelatine and tasimelteon) have recently become available for the treatment of insomnia, depression and circadian rhythms sleep-wake disorders. The efficacy and safety profiles of these compounds in the treatment of the indicated disorders are reviewed. Accumulating evidence indicates that sleep-wake disorders and co-existing medical conditions are mutually exacerbating. This understanding has now been incorporated into the new Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5). Therefore, when evaluating the risk/benefit ratio of sleep drugs, it is pertinent to also evaluate their effects on wake and comorbid condition. Beneficial effects of melatonin receptor agonists on comorbid neurological, psychiatric, cardiovascular and metabolic symptomatology beyond sleep regulation are also described. The review underlines the beneficial value of enhancing physiological sleep in comorbid conditions.  相似文献   

5.
Mood disorders remain a major public health concern worldwide. Monoaminergic hypotheses of pathophysiology of bipolar and major depressive disorders have led to the development of monoamine transporter-inhibiting antidepressants for the treatment of major depression and have contributed to the expanded indications of atypical antipsychotics for the treatment of bipolar disorders. In spite of psychopharmacological progress, current pharmacotherapy according to the monoaminergic hypothesis alone is insufficient to improve or prevent mood disorders. Recent approval of esketamine for treatment of treatment-resistant depression has attracted attention in psychopharmacology as a glutamatergic hypothesis of the pathophysiology of mood disorders. On the other hand, in the last decade, accumulated findings regarding the pathomechanisms of mood disorders emphasised that functional abnormalities of tripartite synaptic transmission play important roles in the pathophysiology of mood disorders. At first glance, the enhancement of astroglial connexin seems to contribute to antidepressant and mood-stabilising effects, but in reality, antidepressive and mood-stabilising actions are mediated by more complicated interactions associated with the astroglial gap junction and hemichannel. Indeed, several depressive mood-inducing stress stimulations suppress connexin43 expression and astroglial gap junction function, but enhance astroglial hemichannel activity. On the other hand, monoamine transporter-inhibiting antidepressants suppress astroglial hemichannel activity and enhance astroglial gap junction function, whereas several non-antidepressant mood stabilisers activate astroglial hemichannel activity. Based on preclinical findings, in this review, we summarise the effects of antidepressants, mood-stabilising antipsychotics, and anticonvulsants on astroglial connexin, and then, to establish a novel strategy for treatment of mood disorders, we reveal the current progress in psychopharmacology, changing the question from “what has been revealed?” to “what should be clarified?”.  相似文献   

6.
Abnormalities in melatonin physiology may be involved or closely linked to the pathophysiology and behavioral expression of autistic disorder, given its role in neurodevelopment and reports of sleep-wake rhythm disturbances, decreased nocturnal melatonin production, and beneficial therapeutic effects of melatonin in individuals with autism. In addition, melatonin, as a pineal gland hormone produced from serotonin, is of special interest in autistic disorder given reported alterations in central and peripheral serotonin neurobiology. More specifically, the role of melatonin in the ontogenetic establishment of circadian rhythms and the synchronization of peripheral oscillators opens interesting perspectives to ascertain better the mechanisms underlying the significant relationship found between lower nocturnal melatonin excretion and increased severity of autistic social communication impairments, especially for verbal communication and social imitative play. In this article, first we review the studies on melatonin levels and the treatment studies of melatonin in autistic disorder. Then, we discuss the relationships between melatonin and autistic behavioral impairments with regard to social communication (verbal and non-verbal communication, social interaction), and repetitive behaviors or interests with difficulties adapting to change. In conclusion, we emphasize that randomized clinical trials in autism spectrum disorders are warranted to establish potential therapeutic efficacy of melatonin for social communication impairments and stereotyped behaviors or interests.  相似文献   

7.
Melatonin is registered to treat circadian rhythm sleep–wake disorders and insomnia in patients aged 55 years and over. The essential role of the circadian sleep rhythm in the deterioration of sleep quality during COVID-19 confinement and the lack of an adverse effect of melatonin on respiratory drive indicate that melatonin has the potential to be a recommended treatment for sleep disturbances related to COVID-19. This review article describes the effects of melatonin additional to its sleep-related effects, which make this drug an attractive therapeutic option for treating patients with COVID-19. The preclinical data suggest that melatonin may inhibit COVID-19 progression. It may lower the risk of the entrance of the SARS-CoV-2 virus into cells, reduce uncontrolled hyper-inflammation and the activation of immune cells, limit the damage of tissues and multiorgan failure due to the action of free radicals, and reduce ventilator-induced lung injury and the risk of disability resulting from fibrotic changes within the lungs. Melatonin may also increase the efficacy of COVID-19 vaccination. The high safety profile of melatonin and its potential anti-SARS-CoV-2 effects make this molecule a preferable drug for treating sleep disturbances in COVID-19 patients. However, randomized clinical trials are needed to verify the clinical usefulness of melatonin in the treatment of COVID-19.  相似文献   

8.
Melatonin receptors are members of the G protein-coupled receptor (GPCR) family. Three genes for melatonin receptors have been cloned. The MT1 (or Mel1a or MTNR1A) and MT2 (or Mel1b or MTNR1B) receptor subtypes are present in humans and other mammals, while an additional melatonin receptor subtype, Mel1c (or MTNR1C), has been identified in fish, amphibians and birds. Another melatonin related orphan receptor, GPR50, which does not bind melatonin, is found exclusively in mammals. The hormone melatonin is secreted primarily by the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone acts systemically in numerous organs. In the brain, it is involved in the regulation of various neural and endocrine processes, and it readjusts the circadian pacemaker, the suprachiasmatic nucleus. This article reviews recent studies of gene organization, expression, evolution and mutations of melatonin receptor genes of vertebrates. Gene polymorphisms reveal that numerous mutations are associated with diseases and disorders. The phylogenetic analysis of receptor genes indicates that GPR50 is an outgroup to all other melatonin receptor sequences. GPR50 may have separated from a melatonin receptor ancestor before the split between MTNR1C and the MTNR1A/B ancestor.  相似文献   

9.
The zebrafish has become an excellent model for the study of human diseases because it offers many advantages over other vertebrate animal models. The pineal gland, as well as the biological clock and circadian rhythms, are highly conserved in zebrafish, and melatonin is produced in the pineal gland and in most organs and tissues of the body. Zebrafish have several copies of the clock genes and of aanat and asmt genes, the latter involved in melatonin synthesis. As in mammals, melatonin can act through its membrane receptors, as with zebrafish, and through mechanisms that are independent of receptors. Pineal melatonin regulates peripheral clocks and the circadian rhythms of the body, such as the sleep/wake rhythm, among others. Extrapineal melatonin functions include antioxidant activity, inducing the endogenous antioxidants enzymes, scavenging activity, removing free radicals, anti-inflammatory activity through the regulation of the NF-κB/NLRP3 inflammasome pathway, and a homeostatic role in mitochondria. In this review, we introduce the utility of zebrafish to analyze the mechanisms of action of melatonin. The data here presented showed that the zebrafish is a useful model to study human diseases and that melatonin exerts beneficial effects on many pathophysiological processes involved in these diseases.  相似文献   

10.
Type 2 diabetes mellitus (T2DM) patients are at a higher risk of developing Alzheimer’s disease (AD). Mounting evidence suggests the emerging important role of circadian rhythms in many diseases. Circadian rhythm disruption is considered to contribute to both T2DM and AD. Here, we review the relationship among circadian rhythm disruption, T2DM and AD, and suggest that the occurrence and progression of T2DM and AD may in part be associated with circadian disruption. Then, we summarize the promising therapeutic strategies targeting circadian dysfunction for T2DM and AD, including pharmacological treatment such as melatonin, orexin, and circadian molecules, as well as non-pharmacological treatments like light therapy, feeding behavior, and exercise.  相似文献   

11.
The skin, being the largest organ in the human body, is exposed to the environment and suffers from both intrinsic and extrinsic aging factors. The skin aging process is characterized by several clinical features such as wrinkling, loss of elasticity, and rough-textured appearance. This complex process is accompanied with phenotypic and functional changes in cutaneous and immune cells, as well as structural and functional disturbances in extracellular matrix components such as collagens and elastin. Because skin health is considered one of the principal factors representing overall “well-being” and the perception of “health” in humans, several anti-aging strategies have recently been developed. Thus, while the fundamental mechanisms regarding skin aging are known, new substances should be considered for introduction into dermatological treatments. Herein, we describe melatonin and its metabolites as potential “aging neutralizers”. Melatonin, an evolutionarily ancient derivative of serotonin with hormonal properties, is the main neuroendocrine secretory product of the pineal gland. It regulates circadian rhythmicity and also exerts anti-oxidative, anti-inflammatory, immunomodulatory, and anti-tumor capacities. The intention of this review is to summarize changes within skin aging, research advances on the molecular mechanisms leading to these changes, and the impact of the melatoninergic anti-oxidative system controlled by melatonin and its metabolites, targeting the prevention or reversal of skin aging.  相似文献   

12.
Melatonin is an endogenous molecule involved in many pathophysiological processes. In addition to the control of circadian rhythms, its antioxidant and neuroprotective properties have been widely described. Thus far, different bivalent compounds composed by a melatonin molecule linked to another neuroprotective agent were synthesized and tested for their ability to block neurodegenerative processes in vitro and in vivo. To identify a novel class of potential neuroprotective compounds, we prepared a series of bivalent ligands, in which a prototypic melatonergic ligand is connected to an imidazole-based H3 receptor antagonist through a flexible linker. Four imidazolyl-alkyloxy-anilinoethylamide derivatives, characterized by linkers of different length, were synthesized and their binding affinity for human MT1, MT2 and H3 receptor subtypes was evaluated. Among the tested compounds, 14c and 14d, bearing a pentyl and a hexyl linker, respectively, were able to bind to all receptor subtypes at micromolar concentrations and represent the first bivalent melatonergic/histaminergic ligands reported so far. These preliminary results, based on binding affinity evaluation, pave the way for the future development of new dual-acting compounds targeting both melatonin and histamine receptors, which could represent promising therapeutic agents for the treatment of neurodegenerative pathologies.  相似文献   

13.
Preclinical and clinical evidence supports melatonin and its analogues as potential treatment for diseases involving cognitive deficit such as Alzheimer’s disease. In this work, we evaluated by in silico studies a set of boron-containing melatonin analogues on MT1 and MT2 receptors. Then, we synthesized a compound (borolatonin) identified as potent agonist. After chemical characterization, its evaluation in a rat model with cognitive deficit showed that it induced ameliorative effects such as those induced by equimolar administration of melatonin in behavioral tests and in neuronal immunohistochemistry assays. Our results suggest the observed effects are by means of action on the melatonin system. Further studies are required to clarify the mechanism(s) of action, as the beneficial effects on disturbed memory by gonadectomy in male rats are attractive.  相似文献   

14.
15.
Brain injury, especially traumatic brain injury (TBI), may induce severe dysfunction of extracerebral organs. Cardiac dysfunction associated with TBI is common and well known as the brain–heart crosstalk, which broadly refers to different cardiac disorders such as cardiac arrhythmias, ischemia, hemodynamic insufficiency, and sudden cardiac death, which corresponds to acute disorders of brain function. TBI-related cardiac dysfunction can both worsen the brain damage and increase the risk of death. TBI-related cardiac disorders have been mainly treated symptomatically. However, the analysis of pathomechanisms of TBI-related cardiac dysfunction has highlighted an important role of melatonin in the prevention and treatment of such disorders. Melatonin is a neurohormone released by the pineal gland. It plays a crucial role in the coordination of the circadian rhythm. Additionally, melatonin possesses strong anti-inflammatory, antioxidative, and antiapoptotic properties and can modulate sympathetic and parasympathetic activities. Melatonin has a protective effect not only on the brain, by attenuating its injury, but on extracranial organs, including the heart. The aim of this study was to analyze the molecular activity of melatonin in terms of TBI-related cardiac disorders. Our article describes the benefits resulting from using melatonin as an adjuvant in protection and treatment of brain injury-induced cardiac dysfunction.  相似文献   

16.
Obesity and its complications have become a prominent global public health problem that severely threatens human health. Melatonin, originally known as an effective antioxidant, is an endogenous hormone found throughout the body that serves various physiological functions. In recent decades, increasing attention has been paid to its unique function in regulating energy metabolism, especially in glucose and lipid metabolism. Accumulating evidence has established the relationship between melatonin and obesity; nevertheless, not all preclinical and clinical evidence indicates the anti-obesity effect of melatonin, which makes it remain to conclude the clinical effect of melatonin in the fight against obesity. In this review, we have summarized the current knowledge of melatonin in regulating obesity-related symptoms, with emphasis on its underlying mechanisms. The role of melatonin in regulating the lipid profile, adipose tissue, oxidative stress, and inflammation, as well as the interactions of melatonin with the circadian rhythm, gut microbiota, sleep disorder, as well as the α7nAChR, the opioidergic system, and exosomes, make melatonin a promising agent to open new avenues in the intervention of obesity.  相似文献   

17.
Neurological/neurovascular disorders constitute the leading cause of disability and the second leading cause of death globally. Major neurological/neurovascular disorders or diseases include cerebral stroke, Alzheimer’s disease, spinal cord injury, neonatal hypoxic-ischemic encephalopathy, and others. Their pathophysiology is considered highly complex and is the main obstacle in developing any drugs for these diseases. In this review, we have described the endothelin system, its involvement in neurovascular disorders, the importance of endothelin B receptors (ETBRs) as a novel potential drug target, and its agonism by IRL-1620 (INN—sovateltide), which we are developing as a drug candidate for treating the above-mentioned neurological disorders/diseases. In addition, we have highlighted the results of our preclinical and clinical studies related to these diseases. The phase I safety and tolerability study of sovateltide has shown it as a safe and tolerable compound at therapeutic dosages. Furthermore, preclinical and clinical phase II studies have demonstrated the efficacy of sovateltide in treating acute ischemic stroke. It is under development as a first-in-class drug. In addition, efficacy studies in Alzheimer’s disease (AD), acute spinal cord injury, and neonatal hypoxic-ischemic encephalopathy (HIE) are ongoing. Successful completion of these studies will validate that ETBRs signaling can be an important target in developing drugs to treat neurological/neurovascular diseases.  相似文献   

18.
Age and age-dependent inflammation are two main risk factors for cardiovascular diseases. Aging can also affect clock gene-related impairments such as chronodisruption and has been linked to a decline in melatonin synthesis and aggravation of the NF-κB/NLRP3 innate immune response known as inflammaging. The molecular drivers of these mechanisms remain unknown. This study investigated the impact of aging and NLRP3 expression on the cardiac circadian system, and the actions of melatonin as a potential therapy to restore daily rhythms by mitigating inflammaging. We analyzed the circadian expression and rhythmicity of clock genes in heart tissue of wild-type and NLRP3-knockout mice at 3, 12, and 24 months of age, with and without melatonin treatment. Our results support that aging, NLRP3 inflammasome, and melatonin affected the cardiac clock genes expression, except for Rev-erbα, which was not influenced by genotype. Aging caused small phase changes in Clock, loss of rhythmicity in Per2 and Rorα, and mesor dampening of Clock, Bmal1, and Per2. NLRP3 inflammasome influenced the acrophase of Clock, Per2, and Rorα. Melatonin restored the acrophase and the rhythm of clock genes affected by age or NLRP3 activation. The administration of melatonin re-established murine cardiac homeostasis by reversing age-associated chronodisruption. Altogether, these results highlight new findings about the effects aging and NLRP3 inflammasome have on clock genes in cardiac tissue, pointing to continuous melatonin as a promising therapy to placate inflammaging and restore circadian rhythm in heart muscle. Additionally, light microscopy analysis showed age-related morphological impairments in cardiomyocytes, which were less severe in mice lacking NLRP3. Melatonin supplementation preserved the structure of cardiac muscle fibers in all experimental groups.  相似文献   

19.
The vast majority of Attention-deficit/hyperactivity disorder (ADHD) patients have other associated pathologies, with depressive symptoms as one of the most prevalent. Among the mediators that may participate in ADHD, melatonin is thought to regulate circadian rhythms, neurological function and stress response. To determine (1) the serum baseline daily variations and nocturnal excretion of melatonin in ADHD subtypes and (2) the effect of chronic administration of methylphenidate, as well as the effects on symptomatology, 136 children with ADHD (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision: DSM-IV-TR criteria) were divided into subgroups using the “Children’s Depression Inventory” (CDI). Blood samples were drawn at 20:00 and 09:00 h, and urine was collected between 21:00 and 09:00 h, at inclusion and after 4.61 ± 2.29 months of treatment. Melatonin and its urine metabolite were measured by radioimmunoassay RIA. Factorial analysis was performed using STATA 12.0. Melatonin was higher predominantly in hyperactive-impulsive/conduct disordered children (PHI/CD) of the ADHD subtype, without the influence of comorbid depressive symptoms. Methylphenidate ameliorated this comorbidity without induction of any changes in the serum melatonin profile, but treatment with it was associated with a decrease in 6-s-melatonin excretion in both ADHD subtypes. Conclusions: In untreated children, partial homeostatic restoration of disrupted neuroendocrine equilibrium most likely led to an increased serum melatonin in PHI/CD children. A differential cerebral melatonin metabolization after methylphenidate may underlie some of the clinical benefit.  相似文献   

20.
Cancer represents a large group of diseases accounting for nearly 10 million deaths each year. Various treatment strategies, including surgical resection combined with chemotherapy, radiotherapy, and immunotherapy, have been applied for cancer treatment. However, the outcomes remain largely unsatisfying. Melatonin, as an endogenous hormone, is associated with the circadian rhythm moderation. Many physiological functions of melatonin besides sleep–wake cycle control have been identified, such as antioxidant, immunomodulation, and anti-inflammation. In recent years, an increasing number of studies have described the anticancer effects of melatonin. This has drawn our attention to the potential usage of melatonin for cancer treatment in the clinical setting, although huge obstacles still exist before its wide clinical administration is accepted. The exact mechanisms behind its anticancer effects remain unclear, and the specific characters impede its in vivo investigation. In this review, we will summarize the latest advances in melatonin studies, including its chemical properties, the possible mechanisms for its anticancer effects, and the ongoing clinical trials. Importantly, challenges for the clinical application of melatonin will be discussed, accompanied with our perspectives on its future development. Finally, obstacles and perspectives of using melatonin for cancer treatment will be proposed. The present article will provide a comprehensive foundation for applying melatonin as a preventive and therapeutic agent for cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号