共查询到20条相似文献,搜索用时 78 毫秒
1.
针对自动驾驶车辆视觉感知系统在雾天条件下捕获图像质量较低,造成目标检测算法精度下降的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)图像增强的跨域自适应雾天目标检测方法。构建一个端到端目标检测网络,融合数字图像处理技术(digital image processing,DIP)和CNN的自适应图像增强模块,通过小型CNN参数预测器自适应学习增强参数,提升雾天图像质量;进一步地,将多尺度领域自适应(domain adaptive,DA)模块与YOLOv4主干网络相连,通过对抗训练减少由雾天造成的领域差异,提高雾天目标检测精度。在训练阶段,所提方法以端到端的方式学习CNN、DA模块以及YOLOv4,而在目标检测阶段将移除CNN及DA模块,仅使用预训练权重在正常天气和雾天天气自适应地检测图像,不会增加原有网络复杂性,从而保证自动驾驶车辆的实时性要求。在公开数据集Foggy Cityscapes上的实验表明,采用所提方法使雾天图像质量显著增强,目标检测平均精度提升了10.4%,有效提升了雾天条件下自动驾驶车辆对目标的识别能力。 相似文献
2.
文章通过深入探讨水电网络的基本架构和特点,设计一个基于卷积神经网络(ConvolutionalNeural Network,CNN)的入侵检测系统,并采用KDDCup1999数据集验证该系统的性能。实验结果表明,该系统在正常样本上的分类性能较好,可以有效识别入侵行为和异常流量。 相似文献
3.
智能交通是现代交通发展的前沿领域,交通事件预测是其中的一个研究热点.传统BP神经网络模型是交通事件分析中常用的模型分析方法之一,但易陷入局部极值,不适合处理长期且连续的交通事件数据.为解决上述问题,提出使用循环神经网络处理交通事件数据,利用循环神经网络模型的有限时间长度记忆优势,构建序列数据分类模型来训练数据,采用随机... 相似文献
4.
针对股票数据共线性和非线性的特点,提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)和门控循环单元(Gated Recurrent Unit,GRU)神经网络的混合预测模型,并对沪深300指数、上证综指和深证成指进行了预测.该模型首先采用CNN提取特征向量,对原始数据进行降维... 相似文献
5.
传统的电流互感器绝缘故障检测方法正判率较低、漏检率较高,因此提出基于卷积神经网络算法的电流互感器绝缘故障智能检测方法。利用小波变换算法对原始数据进行滤波预处理,建立模糊度检测模型来提取故障信号特征,并利用卷积神经网络算法实现电流互感器绝缘故障的检测。实验证明,设计方法正判率较高、漏检率较低,具有良好的应用前景。 相似文献
7.
目的 深度伪造视频检测是目前计算机视觉领域的热点研究问题。卷积神经网络和Vision Transformer(ViT)都是深度伪造检测模型中的基础结构,二者虽各有优势,但都面临训练和测试阶段耗时较长、跨压缩场景精度显著下降问题。针对这两类模型各自的优缺点,以及不同域特征在检测场景下的适用性,提出了一种高效的CNN(convolutional neural network)结合Transformer的联合模型。方法 设计基于Efficient Net的空间域特征提取分支及频率域特征提取分支,以丰富单分支的特征表示。之后与Transformer的编码器结构、交叉注意力结构进行连接,对全局区域间特征相关性进行建模。针对跨压缩、跨库场景下深度伪造检测模型精度下降问题,设计注意力机制及嵌入方式,结合数据增广策略,提高模型在跨压缩率、跨库场景下的鲁棒性。结果 在Face Forensics++的4个数据集上与其他9种方法进行跨压缩率的精度比较,在交叉压缩率检测实验中,本文方法对Deepfake、Face2Face和Neural Textures伪造图像的检测准确率分别达到90.35%、71.79%... 相似文献
8.
为了有效解决眼底图像病变处存在交织重叠,大小血管密布并且受光照影响严重等问题,实现眼底图像多标签分类,提出了采用单种群蛙跳优化的卷积神经网络算法(SFCNN)对眼底多种病变进行检测.该算法保留混合蛙跳算法(SFLA)的高效寻优能力,简化成单种群蛙跳算法,并与传统卷积神经网络(CNN)有效结合.在初始化网络时,通过蛙跳算法优化网络初始权值选择;在网络迭代过程中监听卷积神经网络前向传播损失值并利用蛙跳算法的寻优能力修正异常权值;在网络符合结束条件后对最终权值进行一次蛙跳寻优,使网络权值得到进一步的优化,从而实现对复杂的眼底图像多病变检测分类.该算法对眼底图像病变检测的实验表明,相对于传统CNN算法,无论是在单病变检测还是同时整体检测,正确率均有所提高. 相似文献
9.
针对现有基于深度学习的三维模型识别方法缺乏结合三维模型的上下文细粒度局部特征,可能造成几何形状极其相似,局部细节信息略有不同的类识别混淆的问题,提出一种基于深度图注意力卷积神经网络的三维模型识别方法。首先,通过引入邻域选择机制挖掘三维模型的细粒度局部特征。其次,通过空间上下文编码机制捕捉多尺度空间上下文信息,且与细粒度局部特征相互补偿以增强特征的完备性。最后,采用一种多头部机制,使图注意力卷积层聚合多个单头部的特征以增强特征的丰富性。此外,设计选择性丢弃算法,根据度量权重值对神经元重要性进行排序,智能地丢弃重要性较低的神经元来防止网络过拟合。算法在ModelNet40数据集上的三维模型识别准确率达到了92.6%,且网络复杂度较低,在三维模型识别准确率和网络复杂度之间达到最佳平衡,优于当前主流方法。 相似文献
10.
为缓解推荐系统中数据稀疏性问题,利用卷积神经网络CNN具有较强捕捉局部特征能力的优势,通过加入一个调节层,提出一种改进CNN的局部相似性预测推荐模型LSPCNN。新模型对初始用户-项目评分矩阵进行迭代调整,使用户兴趣偏好局部特征化,再融合CNN对缺失评分进行预测,从而实施个性化推荐。实验结果表明,LSPCNN模型在不同数据稀疏度下的MAE值较传统推荐方法平均下降4%,有效缓解了数据稀疏性,提高了推荐系统的性能。 相似文献
11.
针对现实场景中遮挡人脸检测精度低的问题,提出了一种基于汇聚CNN和注意力增强网络的遮挡人脸检测方法.首先,在主网络的多层原始特征图上,通过有监督学习的方法增强原始特征图中人脸可见部分的响应值.然后,将多个增强特征图组合成附加增强网络与主网络汇聚设置,以加快对多尺度遮挡人脸的检测速度.最后,将有监督信息分散到各个尺寸的特... 相似文献
12.
传统边缘检测算法难以处理复杂的图像, 而现有基于深度的边缘检测模型, 其检测结果往往存在边缘定位错误和信息丢失等现象. 针对此类问题, 提出一种基于RCF的高精度的边缘检测算法RCF-CLF. 首先, 引入HDC结构设计用于避免因叠加相同膨胀卷积而引起的网格效应; 其次, 设计了一种特征增强结构, 旨在融合多尺度信息、扩大感受野; 然后, 设计了跨层融合结构, 将高层信息和低层信息融合, 用于提取准确的边缘信息; 最后, 引入注意力机制 CBAM, 通过聚焦物体边缘区域, 抑制非边缘区域, 从而提高网络对边缘信息的提取能力. 本文在BSDS500和BIPED数据集上评估所提出的方法, 与RCF算法相比, 在BIPED数据集上, 主要指标ODS、OIS和AP分别达到了0.893、0.901和0.945, 提高了近5个百分点, 在BSDS500数据集上, 主要指标也有所提升. 此外, 与其他同类算法相比, 本文算法也具有一定的优势, 可以实现更加准确的边缘定位. 相似文献
13.
利用神经网络进行辐射源个体识别时,训练样本的单一性会导致深度网络出现过拟合的现象,继而影响辐射源个体识别的精确性。针对该问题,本文提出一种基于PID算法的深度卷积网络结构,该结构通过在传统卷积神经网络的输出层与输入层间构建一条反馈回路,采用PID算法将网络输出错误率转化为划分训练集数据构成的概率,通过优化训练集数据构成,达到抑制过拟合的目的。将该方法应用于超短波电台识别,平均识别率达到92.59%,识别率方差约为传统算法的1/3,训练用时减少约35 min,上述指标均优于传统神经网络。实验结果表明,该算法增强了深度网络的鲁棒性,有效地抑制了过拟合现象。 相似文献
14.
Convolutional neural networks (CNNs) have shown tremendous progress and performance in recent years. Since emergence, CNNs have exhibited excellent performance in most of classification and segmentation tasks. Currently, the CNN family includes various architectures that dominate major vision-based recognition tasks. However, building a neural network (NN) by simply stacking convolution blocks inevitably limits its optimization ability and introduces overfitting and vanishing gradient problems. One of the key reasons for the aforementioned issues is network singularities, which have lately caused degenerating manifolds in the loss landscape. This situation leads to a slow learning process and lower performance. In this scenario, the skip connections turned out to be an essential unit of the CNN design to mitigate network singularities. The proposed idea of this research is to introduce skip connections in NN architecture to augment the information flow, mitigate singularities and improve performance. This research experimented with different levels of skip connections and proposed the placement strategy of these links for any CNN. To prove the proposed hypothesis, we designed an experimental CNN architecture, named as Shallow Wide ResNet or SRNet, as it uses wide residual network as a base network design. We have performed numerous experiments to assess the validity of the proposed idea. CIFAR-10 and CIFAR-100, two well-known datasets are used for training and testing CNNs. The final empirical results have shown a great many of promising outcomes in terms of performance, efficiency and reduction in network singularities issues. 相似文献
15.
针对焊缝X射线图像缺陷识别传统方法的计算量大与准确度差的问题,提出了基于MobileNet的识别方法。首先对样本图像进行预处理和数量上的增强;然后引入MobileNet结构以解决传统深度卷积神经网络中对计算资源要求高的问题,引入残差结构与ELU激活函数以解决原始MobileNet网络中出现的退化问题与权重偏置更新失效的问题,在训练时应用迁移学习方法,解决小数据集容易过拟合与训练效率低的问题;最后,针对相同数据集,与改进前的网络、AlexNet网络和VGG-16网络进行对比,表明该文方法具备更优的识别准确率和相比传统网络拥有更小的计算量,相比传统网络的缺陷识别方法拥有更大的应用范围。 相似文献
16.
在低照度环境下拍摄到的视频往往有对比度低、噪点多、细节不清晰等问题, 严重影响后续的目标检测、分割等计算机视觉任务. 现有的低照度视频增强方法大都是基于卷积神经网络构建的, 由于卷积无法充分利用像素之间的长程依赖关系, 生成的视频往往会有部分区域细节丢失、颜色失真的问题. 针对上述问题, 提出了一种局部与全局相融合的孪生低照度视频增强网络模型, 通过基于可变形卷积的局部特征提取模块来获取视频帧的局部特征, 并且设计了一个轻量级自注意力模块来捕获视频帧的全局特征, 最后通过特征融合模块对提取到的局部特征和全局特征进行融合, 指导模型能生成颜色更真实、更具细节的增强视频. 实验结果表明, 本方法能有效提高低照度视频的亮度, 生成颜色和细节都更丰富的视频, 并且在峰值信噪比和结构相似性等评价指标中也都优于近几年提出的方法. 相似文献
17.
为提高性别分类准确率, 在传统卷积神经网络(Convolutional neural network, CNN)的基础上, 提出一个跨连卷积神经网络(Cross-connected CNN, CCNN)模型. 该模型是一个9层的网络结构, 包含输入层、6个由卷积层和池化层交错构成的隐含层、全连接层和输出层, 其中允许第2个池化层跨过两个层直接与全连接层相连接. 在10个人脸数据集上的性别分类实验结果表明, 跨连卷积网络的准确率均不低于传统卷积网络. 相似文献
18.
为了提高边缘计算设备对植物叶片病害检测的识别速率,本研究采用卷积神经网络搭建了植物叶片目标识别模型和植物叶片病害分类模型,并且使用OpenCV将两个模型整合成植物叶片病害检测系统.通过SSD (single shot multibox detector)算法对植物叶片的目标区域进行定位并裁剪,再利用植物叶片病害分类模型对裁剪的植物叶片区域进行病害分类.同时,通过TensorRT加速推理对分类模型进行优化处理,以及在同一台主机设备和Jetson Nano计算平台上,对优化前后的模型进行了对比实验.实验表明,在同一主机设备上优化后的植物分类模型识别速率提升22倍.同时,优化后的分类模型使植物叶片病害检测系统识别速率提升7倍.而将优化后的系统部署在Jetson Nano计算平台上,对比优化前的植物叶片病害检测速率提升10倍,实现了实时的植物叶片病害检测. 相似文献
20.
针对大多数图像去雾算法模型参数估计准确性差及色彩失真等问题,提出了一种端到端的密集连接扩张卷积神经网络。首先,通过使用多层密集连接结构来增加网络的特征利用率,避免网络加深时的梯度消失现象。其次,通过在密集块中使用不同扩张率的扩张卷积,使网络在充分聚合上下文特征信息时不损失空间分辨率,并避免了网格伪影的产生。最后,为了提高算法的去雾能力,将该网络划分为多个阶段,并在每个阶段引入侧输出模块,从而获得更精确的特征信息。实验结果表明,所提出的去雾算法无论是在合成数据集上还是在真实数据集上都取得了较好的去雾效果,恢复的色彩更接近无雾图像,并且定量评价指标峰值信噪比(PSNR)和结构相似性(SSIM)均优于其他对比方法。 相似文献
|