首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为减小配流冲击,高压柱塞泵的柱塞腔在过渡过程中必须通过机械闭死压缩、膨胀和减振槽引油共同作用来实现预升压和预卸压。此过程中,减振槽的两端均作用较大变化的压差,槽中的油液产生较大速度的压差流,导致出现低压区,形成气穴,气泡破裂时产生气蚀,破坏配流盘和缸体表面,大幅降低泵的容积效率。进行耐久性试验,研究配流气蚀破坏的特征和容积效率的变化。结果表明:在现有配流结构下,配流气蚀严重,耐久性试验仅开展了600 h,缸体表面已出现严重的气蚀破坏,导致泵的容积效率大幅下降。为提高泵的耐久性和提高容积效率,必须研究抗气蚀配流结构以减小配流副表面的配流气蚀破坏。  相似文献   

2.
闭式柱塞泵采用"正开口"配流结构以保证全工况下配流冲击较小。配流过程中,减振槽进出口的压差变化时,槽中产生较大速度的压差流,导致低压区的出现,产生较严重的配流空化。为保证闭式柱塞泵配流过程中油液压力变化平稳、减小配流冲击和噪声,利用PumpLinx软件,对其全工况下配流气穴分布和气体体积分数进行研究。结果表明:随着排量、工作压力、转速、油温的增大和油液体积弹性模量的减小,配流盘流场区域的气体体积分数增大,气穴现象加剧。  相似文献   

3.
刘浩  齐国宁  王峥嵘 《机床与液压》2023,51(10):161-165
以某型闭式高压柱塞泵为对象,建立配流盘和缸体零件的三维模型,利用PumpLinx软件进行网格划分和计算模型的选择,对采用V形槽配流结构的闭式柱塞泵进行了全流场仿真计算,分析其配流空化特征,并与耐久性试验后缸体表面的空蚀破坏情况进行对比分析,得出采用V形槽配流结构的闭式柱塞泵配流空化产生和空蚀破坏的机制。  相似文献   

4.
以降低油液冲击、减少振动噪声为目标,提出多作用恒流轴向柱塞泵的一种新型配流盘并设计其减振结构,建立配流盘预升压、预卸压区压力特性数学模型,比较研究过流截面为恒值、线性变化、平方变化3种不同几何形状下的配流盘预升压、预卸压区压力变化特性。结果表明过流截面为恒值减振槽压力梯度变化最小,为低液压冲击、低噪声、多作用恒流轴向柱塞泵配流结构设计提供依据。  相似文献   

5.
针对三配流窗口非对称轴向柱塞泵在非死点过渡区配流转换产生较大的流量和压力冲击问题,提出一种采用额外油道将非死点过渡区高压油预泄至上死点过渡区的新型配流盘结构,不仅可降低流量脉动和压力冲击,而且过渡区高压油液得到再利用,提高液压泵能效。首先设计新型配流盘结构,理论分析了新型配流盘工作原理,并建立基于新型配流盘的非对称轴向柱塞泵仿真模型,分析油道半径和分布位置对轴向柱塞泵流量脉动的影响,研究不同负载情况下新型配流盘结构的有效性。结果表明:该方案能对非死点过渡区柱塞起到预降压作用,对上死点过渡区柱塞起到预升压作用;当油孔半径为065 mm,分布位置为8°和88°时,轴向柱塞泵性能最优。  相似文献   

6.
为了研究节流孔角度和孔径对气蚀的影响,用FLUENT软件对三角槽节流阀节流孔在角度为8°和2°,阀口开度2mm和0.04mm的压力场进行仿真分析。结果表明:减小节流孔角度和孔径,流场产生低于空气分离压的负压的压差增大,甚至在较高压差下不产生低于空气分离压的低压。该结论对液压泵浮动侧板或配流盘减振槽高压差下抗气蚀设计有参考价值。  相似文献   

7.
针对C-SPVO71系列轴向柱塞泵配流副(配流盘与缸体)试验出现局部磨损以及黏连故障,从配流盘与缸体配流副的力平衡关系、配流盘与缸体摩擦副材料、磨粒磨损3个方面进行失效分析,提出以下改进措施:在保证柱塞泵容积效率的前提下,减小剩余压紧力;选择高耐磨的摩擦副材料;控制磨粒磨损的先决条件.将这些措施运用于产品批量制造,取得较好效果.  相似文献   

8.
通过对轴向柱塞泵配流盘两种基本减振方式(减振槽、减振孔)减振原理的研究,提出了新型的孔槽结合型减振槽设计方案,结合了孔和槽的优点,经计算可降低压力梯度,减小振动,降低泵在工作过程中的噪声.  相似文献   

9.
将纯水液压柱塞泵配流盘的主要结构参数对配流过程压力冲击的影响进行了仿真研究,这些结构参数包括阻尼减振槽的结构形状、柱塞腔的闭死容积、配流盘安装错配角、过渡区遮盖角,通过分析提出了有利于降低配流过程中压力冲击和噪声的配流盘设计方法.  相似文献   

10.
余永平  尹霞 《机床与液压》2015,43(21):163-167
以双列轴向柱塞泵为研究对象,根据新型双列柱塞泵配流盘的特点,以降低压力脉动为目的,选择了适用于工况的配流盘形式,推导了配流盘的过渡区角度、三角减振槽和阻尼孔的设计尺寸。仿真分析了配流盘减震槽对压力脉动影响模式,并验证了减震槽在双列泵中的优化作用。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
吴玉梅  熊晓云  靳蓉  孙敬民  杨林  罗晓星 《金属学报》2005,10(10):1100-1103
目的: 观察本实验室合成的一种治疗阿尔茨海默氏症(AD)的药物(1-二甲基磷酰基-2, 2, 2 -三氯)-乙基-1-醇烟酸醋(NMF),对体外培养的皮层神经细胞活性的影响以及对海人藻酸(KA)所致的神经损伤的保护作用。方法: 采用体外培养皮层神经元的方法,解剖分离 15 d胚胎小鼠皮层神经细胞, 接种于 96孔板,48 h 后加药并培养 72 h,以 MIT 法 观察 NMF 对小鼠皮层神经细胞活性的影响;同时将接种于 24 孔板的细胞预先给予 NMF,d 3 时加或不加KA处理后,以台盼蓝染色鉴别并计数死、活细胞,可得出细胞的存活率。结果: NMF 明显促进胎鼠皮层神经元活性,其中 NMF1、0. 1、10nmol·L-1促进神经元活性增殖率分别高达 34.7%、37.4%、36. 7%, NMF 明显促进正常胎鼠皮层神经元存活卒,与对照组比较,10nmol·L-1 NMF 对皮层神经元的存活率分别提高 39.3%、73.5%。 NMF能显著 对抗 KA 所致的神经元损伤,与 KA 损伤组相比, NMF0.1、10、10nmol·L-1对损伤皮层神经元的保护率分别为 77.30%、80.10%、84.15%。结论: NMF 明 显促进胎鼠皮层神经元的洁性、提高正常皮层神经元,的存活卒,并能有效地保护KA所致的神经元损伤,提示 NMF 是一种很有潜力的治疗 AD 的药物。  相似文献   

13.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

14.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

15.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

16.
Coherent second phase often exhibits anisotropic morphology with specifi c orientations with respect to both the second and the matrix phases. As a key feature of microstructure, the morphology of the coherent particles is essential for understanding the second-phase strengthening eff ect in various industrial alloys. This letter reports anisotropic growth of coherent ferrite from austenite matrix in pure iron based on molecular dynamics simulation. We found that the ferrite grain tends to grow into an elongated plate-like shape, independent of its initial confi guration. The fi nal shape of the ferrite is closely related to the misfi t between the two phases, with the longest direction and the broad facet of the plate being, respectively, consistent with the best matching direction and the best matching plane calculated via the Burgers vector content(BVC) method. The strain energy calculation in the framework of Eshelby's inclusion theory verifi es that the simulated orientation of the coherent ferrite is energetically favorable. It is anticipated that the BVC method will be applicable in analysis of anisotropic growth and morphology of coherent second phase in other phase transformation systems.  相似文献   

17.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

18.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

19.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

20.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号