共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
随着风力发电功率占比日益提高,风电功率的波动对电网安全运行的影响日益加剧。加大电网的旋转备用容量能够解决风电场出力波动的问题,但直接增加了电网运行成本。因此,对于含大规模风电接入的电网,风速及风电功率的准确预测对保证系统安全稳定运行、降低风电消纳成本有着至关重要的作用。在综合分析大量国内外文献资料的基础上,对风速及风电功率预测方法的研究现状进综述,总结常用预测算法的优缺点,给出风速及风电功率预测误差的评价指标体系,并对风速及风电功率预测的发展前景进行展望。 相似文献
3.
风电功率预测方法综述 总被引:1,自引:0,他引:1
随着风电接入容量的持续增长,风力发电的间歇性和波动性对电网造成的影响越来越明显,因此风电功率预测方法的研究得到了广泛的关注。准确的风电功率预测可以给电网调度、机组组合操作、风电场运营维护等提供必要的依据。从3个方面对目前的风电功率预测方法和进展进行介绍。首先,介绍了两种确定性预测方法:仅使用历史数据的统计学习方法和使用了NWP(numerical weather prediction)数据的物理模型。其次,介绍了用于提供预测结果不确定度的概率性预测方法。最后,由于风电爬坡事件会对电网造成较大的影响,还介绍了目前风电爬坡事件预测方法的研究和进展。对现有的风电功率预测方法介绍后,提出了目前风电功率预测模型遇到的一些问题以及需要进行深入研究的方向。 相似文献
4.
5.
6.
7.
风电功率预测方法综述及发展研究 总被引:1,自引:0,他引:1
准确的风电功率预测有利于电网灵活调度和安全运行,进而提高风电场穿透功率.针对目前已有风电功率预测研究,本文首先对国内外风电预测系统进行梳理描述,再从单一模型、组合模型和区域模型角度进行分类阐述,同时深入对样本分析及处理、智能方法的输入变量选取和赋值、组合预测的权重处理、预测误差的评价分析和预测结果的不确定性分析这5个预测环节进行有针对性的详细分析,寻找可以改善预测效果的突破口,并进一步提出风电功率预测的发展建议. 相似文献
8.
9.
风电场风速及风功率预测方法研究综述 总被引:3,自引:0,他引:3
随着全球能源形势日益严峻,传统的化石能源面临枯竭危机,清洁的可再生能源尤其是风能越来越受到人们重视,将来很可能替代化石能源成为主要能源。风速及风功率预测这一基础性研究课题对于风电场规划、风功率的控制、风电并网后电网的安全经济运行有着重要的意义。本文就风速及风功率预测模型进行了归纳整理和比较分析,对各种模型进行了客观评价,最后指出了未来预测模型的发展趋势。 相似文献
10.
风速具有较大的随机波动性,影响风电及其与之相连电网的运行稳定性,良好的风速和风电功率预测是解决风电并网问题的关键。为此,对用于风速预测的灰色模型和马尔可夫链模型进行比较分析。通过对灰色拟合值的误差转移序列进行分析及建立马尔可夫链状态转移概率矩阵,得出灰色-马尔可夫链预测模型,进而求得风速的误差预测值。并用马尔可夫链转移概率矩阵的期望值对传统马尔可夫链进行改进,得出改进型灰色-马尔可夫链模型,以此对风电功率进行直接预测,并与功率曲线模型法进行对比分析。结果表明,改进型灰色-马尔可夫链模型预测精度更高。 相似文献
11.
12.
随着风电在现代电网的渗透率越来越高,电力系统优化运行对风电功率区间预测的可靠性提出了更高要求.现有的风电功率区间预测通常针对历史数据整体的误差,或者基于不同的出力水平进行分类误差建模,难以反映预测模型对于不同风况下的适应性.鉴于此,提出了一种基于数值天气预报(NWP)风速和蒙特卡洛法的短期风电功率区间预测模型.首先,按... 相似文献
13.
风电功率特有的随机波动性,导致风电功率点预测方法的预测精度不高,增加了风电并网的难度,致使风电场弃风现象严重。基于风电功率点预测的基础上,风电功率概率预测可以预测出风电功率的波动范围,为电力系统的安全运行以及电网调度运行给出不确定信息和可靠性评估依据。提出了一种基于t location- scale分布的风电功率概率预测方法,即采用t location-scale函数来描述风电功率预测误差概率分布,并以此建立误差分布,基于已建立的误差分布可以进行概率预测。并引进了覆盖率和平均带宽来评价预测区间的优劣程度。利用吉林省西部某风电场历史数据验证了该方法的可靠性。 相似文献
14.
基于风速云模型相似日的短期风电功率预测方法 总被引:2,自引:0,他引:2
风电功率预测是解决风电不确定性影响的重要基础和必要手段,高比例风电并网条件下对每个时刻点的预测精度要求都将更为严格。训练样本是影响预测精度的关键因素之一,但由于实际天气系统的复杂多样性和类属模糊性,定向选择与调度时段内风况相似的训练样本对预测精度至关重要。因此,提出了基于云模型定向选取风速相似日数据作为训练样本的短期风电功率预测方法,能够对指定时段内风速随机性和模糊性特征进行学习和建模,通过对历史数据的定向筛选和精细化利用提升预测精度。首先,以日为单位建立历史风速的云模型数据库;然后,建立云模型相似度量化指标,用于判断与待预测时段风速云模型最为相似的历史数据序列,以此为训练样本建立短期风电功率预测模型。在实际预测中,每日根据天气预报信息滚动更新训练样本和预测模型,提高预测精度。最后,选择中国北方某风电场运行数据进行实例分析,结果证明了所提方法能够提高风电功率预测精度,具有一定的工程实用价值。 相似文献
15.
准确的风电功率预测可以有效地保证电力系统的安全运行,进而影响电网的电力调度,所以高精度的预测方法变得至关重要。针对极限学习机(ELM)随机产生输入权值和阈值导致回归模型不稳定性与预测结果不准确性,以及风电波动性和间歇性等问题,提出一种基于麻雀算法(SSA)优化极限学习机的组合预测模型(SSA-ELM)。利用收敛速度快、精度高、稳定性好的SSA对ELM的权值和阈值进行寻优,实现了对风电功率的精确预测。仿真结果表明,所提出的SSA-ELM模型的预测精度较高、泛化能力强,能够为风电的功率预测及并网安全的稳定运行提供决策支持。 相似文献
16.
常规的风电场功率预测建模主要方法是将数值天气预报产生的气象要素输入基于历史scada数据建立统计模型,得到全场预报总功率。但是新投产的风电场没有历史scada数据,而风电场功率预测的准确性主要依赖于短期风速预报的精度。因此,为提高新投产风电场功率预测的准确性,短期风速预报的建立是基于数值气象预报的物理模型和统计模型相结合的方式。首先,通过数值气象模式输出风电场测风塔处轮毂高度层的气象要素;其次,通过建立神经网络模型和多元线性回归两种统计方法对模式输出数据进行修正;最后,对误差的来源进行分类分析。在江苏某风场的测试结果表明,较传统的方式,预测精度有了明显的提高,该方法能够消除数值气象预报的振幅偏差,但相位偏差仍是误差的主要来源。 相似文献
17.
18.
风力发电近年来已进入规模化发展阶段。由于风能的随机性和间歇性特征,风电场输出功率往往具有波动性,因此其功率预测对接入风电的电力系统的安全稳定运行及保证电能质量有着重要意义。基于人工神经网络模型,对风电场输出功率进行24小时短期预测,并分析该预测模型的可靠性和精确性,提出改进方法和进一步研究方向。 相似文献