共查询到17条相似文献,搜索用时 78 毫秒
1.
相较于第1代和第2代神经网络,第3代神经网络的脉冲神经网络是一种更加接近于生物神经网络的模型,因此更具有生物可解释性和低功耗性。基于脉冲神经元模型,脉冲神经网络可以通过脉冲信号的形式模拟生物信号在神经网络中的传播,通过脉冲神经元的膜电位变化来发放脉冲序列,脉冲序列通过时空联合表达不仅传递了空间信息还传递了时间信息。当前面向模式识别任务的脉冲神经网络模型性能还不及深度学习,其中一个重要原因在于脉冲神经网络的学习方法不成熟,深度学习中神经网络的人工神经元是基于实数形式的输出,这使得其可以使用全局性的反向传播算法对深度神经网络的参数进行训练,脉冲序列是二值性的离散输出,这直接导致对脉冲神经网络的训练存在一定困难,如何对脉冲神经网络进行高效训练是一个具有挑战的研究问题。本文首先总结了脉冲神经网络研究领域中的相关学习算法,然后对其中主要的方法:直接监督学习、无监督学习的算法以及ANN2SNN的转换算法进行分析介绍,并对其中代表性的工作进行对比分析,最后基于对当前主流方法的总结,对未来更高效、更仿生的脉冲神经网络参数学习方法进行展望。 相似文献
2.
脉冲神经网络(spiking neural network,SNN)以异步事件驱动,支持大规模并行计算,在改善同步模拟神经网络的计算效率方面具有巨大潜力.然而,目前SNN仍然面临无法直接训练的难题,为此,受到神经科学领域关于LIF(leaky integrate-and-fire)神经元响应机制研究启发,提出了一种新的... 相似文献
3.
深度神经网络在实际应用中的局限性日益凸显,具备生物可解释性的类脑计算脉冲神经网络成为了人们研究的热点课题。应用场景的不确定性及复杂多样性给研究者提出了新的挑战,要求类似生物大脑组织具备多尺度架构的类脑计算脉冲神经网络,能够实现对多模态、不确定性信息的感知决策功能。文中主要介绍了多尺度生物合理性的类脑计算脉冲神经网络模型及其面向多模态信息表征和不确定信息感知的学习算法,并分析探讨了基于忆阻器互联的脉冲神经网络可实现多尺度架构类脑计算的两个关键技术问题,即多模态、不确定信息与脉冲时序表示一致性问题和多尺度脉冲神经网络学习算法与容错计算问题。最后,对类脑计算脉冲神经网络的研究方向进行了分析与展望。 相似文献
4.
5.
近年来,起源于计算神经科学的脉冲神经网络因其具有丰富的时空动力学特征、多样的编码机制、契合硬件的事件驱动特性等优势,在神经形态工程和类脑计算领域已得到广泛的关注.脉冲神经网络与当前计算机科学导向的以深度卷积网络为代表的人工神经网络的交叉融合被认为是发展人工通用智能的有力途径.对此,回顾了脉冲神经网络的发展历程,将其划分为神经元模型、训练算法、编程框架、数据集以及硬件芯片等5个重点方向,全方位介绍脉冲神经网络的最新进展和内涵,讨论并分析了脉冲神经网络领域各个重点方向的发展机遇和挑战.希望本综述能够吸引不同学科的研究者,通过跨学科的思想交流与合作研究,推动脉冲神经网络领域的发展. 相似文献
6.
王冬芝;刘琰;郭斌;於志文 《计算机科学》2025,52(3):326-337
移动边缘计算因具有通信成本低、服务响应快等优势,已经成为适应智能物联网应用需求的重要计算模式。在实际应用场景中,一方面,单一设备能够获取到的数据通常有限;另一方面,边缘计算环境通常是动态多变的。针对以上问题,主要对边缘联邦持续学习展开研究,将脉冲神经网络(SNN)创新性地引入到边缘联邦持续学习框架中,在降低设备计算和通信资源消耗的同时,解决本地设备在动态边缘环境中所面临的灾难性遗忘问题。利用SNN解决边缘联邦持续学习问题主要面临两个方面的挑战:首先,传统脉冲神经网络没有考虑持续增加的输入数据,难以在较长的时间跨度内存储和更新知识,导致无法实现有效的持续学习;其次,不同设备学习到的SNN模型存在差异,通过传统联邦聚合获得的全局模型无法在每个边缘设备上取得较好的性能。因此,提出了一种新的脉冲神经网络增强的边缘联邦持续学习(SNN-Enhanced Edge-FCL)方法。针对挑战一,提出了面向边缘设备的类脑持续学习算法,在单个设备上采用类脑脉冲神经网络进行本地训练,同时采用基于羊群效应的样本选择策略保存历史任务的代表样本;针对挑战二,提出了多设备协同的全局自适应聚合算法,基于SNN工作原理设计脉冲数据质量指标,并利用数据驱动的动态加权聚合方法,在全局模型聚合时对不同设备模型赋予相应权重以提升全局模型的泛化性。实验结果表明,相比基于传统神经网络的边缘联邦持续学习方法,SNN-Enhanced Edge-FCL方法在边缘设备上消耗的通信资源和计算资源减少了92%,且边缘设备在测试集上5个连续任务中的准确率都在87%以上。 相似文献
7.
陈奥新;陈亮;李千鹏;王智超;徐东君 《计算机工程与应用》2025,(11):156-165
近年来,具有生物合理性和能效优势的脉冲神经网络(SNN)受到广泛关注。然而,目前在类脑处理器上部署SNN的映射方案存在通信延迟高、拥塞严重、能耗高和节点连接性不足等问题,从而削弱了其实用性和执行效率。为解决这些问题,提出了基于KL(Kernighan-Lin)和波尔兹曼退火差分进化(Boltzmann anneal differential evolution,BADE)的改进部署算法,用于将SNN映射到资源受限的类脑处理器上。该算法包括两个步骤:分区和映射。在分区阶段,通过在递归KL算法中引入全局优化策略(GRBKL)来最小化集群之间的通信延迟;在映射阶段,提出利用吸引子导向的BADE算法(BAFDE)寻找最小化通信延迟和最大拥塞的分配方式。用五个SNN实例对该算法进行了评估,结果表明,与SNEAP和SpiNeMap等方法相比,所提出的算法显著降低了通信延迟(分别降低了55.41%和94.73%)和最大拥塞(分别降低了81.27%和97.79%)。 相似文献
8.
目的 类脑计算,是指仿真、模拟和借鉴大脑神经网络结构和信息处理过程的装置、模型和方法,其目标是制造类脑计算机和类脑智能。方法 类脑计算相关研究已经有20多年的历史,本文从模拟生物神经元和神经突触的神经形态器件、神经网络芯片、类脑计算模型与应用等方面对国内外研究进展和面临的挑战进行介绍,并对未来的发展趋势进行展望。结果 与经典人工智能符号主义、连接主义、行为主义以及机器学习的统计主义这些技术路线不同,类脑计算采取仿真主义:结构层次模仿脑(非冯·诺依曼体系结构),器件层次逼近脑(模拟神经元和神经突触的神经形态器件),智能层次超越脑(主要靠自主学习训练而不是人工编程)。结论 目前类脑计算离工业界实际应用还有较大差距,这也为研究者提供了重要研究方向与机遇。 相似文献
9.
脉冲神经网络(Spiking Neural Network,SNN)包含具有时序动力学特性的神经元节点、稳态-可塑性平衡的突触结构、功能特异性的网络环路等,高度借鉴了生物启发的局部非监督(如脉冲时序依赖可塑性、短时突触可塑性、局部稳态调节等)、全局弱监督(如多巴胺奖赏学习、基于能量的函数优化等)的生物优化方法,因此具有强大的时空信息表征、异步事件信息处理、网络自组织学习等能力.SNN的研究属于交叉学科,将深入融合脑科学和计算机科学,因此对其研究也可以主要分为两大类:一类是以更好地理解生物系统为最终目的 ;另一类是以追求卓越计算性能为优化目标.本文首先对当前这两大类SNN的研究进展、研究特点等进行分析,重点介绍基于Spike的多类异步信息编码、基于Motif分布的多亚型复杂网络结构、多层时钟网络自组织计算、神经形态计算芯片的软硬结合等.同时,介绍一种融合生物多尺度、多类型神经可塑性的高效SNN优化策略,使得SNN中的信度分配可以从宏观尺度有效覆盖到微观尺度,如全部的网络输出、网络隐层状态、局部的各个神经节点等,并部分解答生物系统是如何通过局部参数的调优而实现全局网络优化的问题.这将不仅为现有人工智能模型提高其认知能力指明一种可能的生物类优化方向,还为反向促进生命科学中生物神经网络的可塑性研究新发现提供启发.本文认为,脉冲神经网络的发展目标不是构建人工神经网络的生物版本替代品,而是通过突破生物启发的多尺度可塑性优化理论,去粗取精,最终实现具有生物认知计算特色的新一代高效脉冲神经网络模型,使其有望获得更快的学习速度、更小的能量消耗、更强的适应性和更好的可解释性等. 相似文献
10.
近些年, 具备低功耗、高鲁棒、融合时空信息等优势的脉冲神经网络(SNN)在类脑研究与智能控制的交叉领域方兴未艾. 基于脉冲神经网络架构的智能控制方法是实现与环境自主交互并且高能效完成复杂控制任务的有效途径之一. 为此, 本文首先介绍了SNN的基本要素与研究动机; 然后, 详细介绍了近年来基于脉冲神经网络智能控制的研究进展以及在机器人、无人车、无人机等领域的应用情况; 接着, 总结了一些现有的硬件平台, 用以实现SNN算法的高效能实现; 最后, 总结展望了SNN控制发展的机遇与挑战. 本文旨在梳理出SNN控制发展的技术脉络, 为其快速发展提供借鉴与思路. 相似文献
11.
传统机器人经过长时间的研究和发展, 已经在生产和生活的多个领域得到了广泛的应用, 但在复杂多变的环境中依然缺乏与真实生物类似的灵活性、稳定性和适应能力. 类脑智能作为一种新型的机器智能, 使用计算建模的方法模拟生物神经系统的各类特性, 进而实现对各类信息的推理和决策, 近年来受到了学术界的广泛关注. 鉴于此, 综述了国内外面向机器人系统的类脑智能研究现状, 并对类脑智能方法在机器人感知、决策和控制三个研究方向的成果进行了整理、归纳和分析, 最后从软硬件层面分别指出了机器人类脑智能目前存在的主要问题和未来的发展方向. 相似文献
12.
受生物神经系统启发, 神经形态计算的概念于20世纪80年代被提出, 旨在模拟生物大脑的结构和功能, 实现更高效、更具生物合理性的计算方式. 作为神经形态计算的代表模型, 脉冲神经网络(SNN)因其脉冲稀疏性, 事件驱动性、生物可解释性以及硬件契合性等优势, 在资源严格受限的边缘智能任务中得到了广泛应用. 针对脉冲神经网络的边缘部署情况进行梳理和汇总, 首先从脉冲神经网络模型自身的原理出发, 论述脉冲神经网络的高能效计算方式以及巨大的边缘部署潜力. 然后介绍当下常见的脉冲神经网络硬件实现工具链, 并重点对脉冲神经网络在各类神经形态硬件平台的部署情况做详细的整理与分析. 最后, 考虑到硬件故障行为已发展为当下研究中不可避免的问题, 对脉冲神经网络边缘部署时的故障与容错研究进行概述. 从软件模型原理到硬件平台实现, 全面系统地介绍神经形态计算的最新进展, 分析脉冲神经网络边缘部署时遇到的困难与挑战, 并针对这些挑战给出未来可能的解决方向. 相似文献
13.
人工神经网络(Artificial neural networks,ANNs)与强化学习算法的结合显著增强了智能体的学习能力和效率.然而,这些算法需要消耗大量的计算资源,且难以硬件实现.而脉冲神经网络(Spiking neural networks,SNNs)使用脉冲信号来传递信息,具有能量效率高、仿生特性强等特点,且有利于进一步实现强化学习的硬件加速,增强嵌入式智能体的自主学习能力.不过,目前脉冲神经网络的学习和训练过程较为复杂,网络设计和实现方面存在较大挑战.本文通过引入人工突触的理想实现元件——忆阻器,提出了一种硬件友好的基于多层忆阻脉冲神经网络的强化学习算法.特别地,设计了用于数据——脉冲转换的脉冲神经元;通过改进脉冲时间依赖可塑性(Spiking-timing dependent plasticity,STDP)规则,使脉冲神经网络与强化学习算法有机结合,并设计了对应的忆阻神经突触;构建了可动态调整的网络结构,以提高网络的学习效率;最后,以Open AI Gym中的CartPole-v0(倒立摆)和MountainCar-v0(小车爬坡)为例,通过实验仿真和对比分析,验证了方案的有效性和相对于传统强化学习方法的优势. 相似文献
14.
抑郁症是一种全球性精神疾病;传统诊断方法主要依靠量表与医生的主观评估;无法有效识别症状;甚至存在误诊的风险。基于生理信号的深度学习辅助诊断有望改善传统缺乏生理学依据的方法。然而;传统深度学习方法依赖巨大算力;且大多是端到端的网络学习。这些学习方法也缺乏生理可解释性;限制了辅助诊断临床应用。提出一种用于抑郁症脑电图(electroencephalogram;EEG)诊断的类脑学习模型;在功能层面;构建脉冲神经网络对抑郁症与健康个体进行分类;精度超过97.5%;相比深度卷积方法;脉冲方法降低了能耗;在结构层面;利用复杂网络建立脑连接的空间拓扑并分析其图特征;找出了抑郁症个体潜在的脑功能连接异常机制。 相似文献
15.
大规模脉冲神经网络并行模拟是探究大脑机能的重要手段。其难点在于合理地将负载映射到并行分布式平台上,提升模拟速度。为解决该问题,提出一种基于联合权重超图划分的SNN负载均衡方法,解决并行计算中进程间计算负载与通信负载的均衡问题,提高SNN模拟速度。并使用稀疏通信的方式替代集体通信,解决事件通信过程中的数据冗余问题,提升通信效率。实验结果表明,该方法使带有STDP突触20%规模的皮质层微电路模型的模拟时间,比标准循环分配算法缩短约64.5%,比普通超图分配算法缩短约57.4%,同时事件通信数据量减少了90%以上。 相似文献
16.
经典计算机的理论边界在1936年就由图灵确定了,冯·诺依曼体系结构计算机也受限于图灵机模型.囿于神经形态器件的缺失,神经网络模型一直在经典计算机上运行.然而,冯·诺依曼体系结构与神经网络的异步并行结构及通信机制并不匹配,表现之一是功耗巨大,发展面向神经网络的体系结构,对于人工智能乃至一般意义上的信息处理都是重要方向.类脑机是仿照生物神经网络、采用神经形态器件构造的、以时空信息处理为特征的智能机器.类脑机的思想在计算机发明之前就提出了,研究开发实践也已经进行了30多年,多台类脑系统已经上线运行,其中SpiNNaker专注于类脑系统的体系结构研究,提出了一种行之有效的类脑方案.未来20年左右,预计模式动物大脑和人脑的精细解析将逐步完成,模拟生物神经元和神经突触信息处理功能的神经形态器件及集成工艺将逐步成熟,结构逼近大脑、性能远超大脑的类脑机有望实现.类脑机像生物大脑一样都是脉冲神经网络,神经形态器件具有真正的随机性,因此类脑机具备丰富的非线性动力学行为.已证明任何图灵机均可由脉冲神经网络构造出来,类脑机在理论上是否能够超越图灵机,是需要突破的一个重大问题. 相似文献
17.
脉冲神经网络是目前最具有生物解释性的人工神经网络,是类脑智能领域的核心组成部分.首先介绍各类常用的脉冲神经元模型以及前馈和循环型脉冲神经网络结构;然后介绍脉冲神经网络的时间编码方式,在此基础上,系统地介绍脉冲神经网络的学习算法,包括无监督学习和监督学习算法,其中监督学习算法按照梯度下降算法、结合STDP规则的算法和基于脉冲序列卷积核的算法3大类别分别展开详细介绍和总结;接着列举脉冲神经网络在控制领域、模式识别领域和类脑智能研究领域的应用,并在此基础上介绍各国脑计划中,脉冲神经网络与神经形态处理器相结合的案例;最后分析脉冲神经网络目前所存在的困难和挑战. 相似文献