首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在高开关速度di/dt和寄生电感的耦合下,SiC MOSFET器件极易进入雪崩工作模式。针对现有单一实验失效分析难以揭示不同雪崩冲击模式可能引起不同失效模式的问题,提出在单次和重复雪崩冲击下SiC MOSFET器件失效机理的实验与仿真研究。首先,搭建SiC MOSFET非钳位电感(unclamped inductive switching,UIS)雪崩实验平台及元胞级仿真模型。其次,基于单次脉冲雪崩冲击实验建立SiC MOSFET对应失效模型,获取单次脉冲下失效演化中元胞电热分布规律。最后,基于重复雪崩冲击失效实验,建立SiC MOSFET对应失效演化模型,仿真性能退化特征参数,获取重复雪崩冲击下失效演化过程的电场分布规律。实验和仿真表明,单次脉冲雪崩冲击下寄生BJT闩锁造成SiC MOSFET器件失效;而氧化层捕获空穴形成氧化层固定电荷会导致器件后期阈值电压降低,引起重复雪崩冲击下器件失效。  相似文献   

2.
压接型绝缘栅双极晶体管(press pack insulated gate bipolar transistor,PP-IGBT)器件具有功率密度高、短路失效等优势,已被广泛应用于柔性直流输电换流阀中。现有压接型IGBT器件短路失效研究主要基于宏观测试结果,难以揭示由微观材料失效诱发器件短路失效的机理,该文基于圧接型IGBT器件短路测试结果,提出压接型IGBT器件短路失效机理的多层级模拟方法。首先,搭建短路冲击实验平台,基于短路实验获取失效发生条件与失效芯片;其次,建立压接型IGBT宏观器件——介观元胞模型,研究圧接型IGBT器件短路失效时器件–元胞复合应力变化规律;最后,建立微观元胞铝–硅界面分子动力学模型,分析短路失效发生条件,揭示短路失效机理,并提出芯片失效部位相对概率分布。结果表明,短路工况下芯片靠近栅极的有源区边角是最容易发生失效的薄弱区域,铝、硅材料失效是导致压接型IGBT器件短路失效的直接原因。  相似文献   

3.
王俊杰  郭清  盛况 《电工技术》2019,(11):18-21
针对SiC MOSFET的雪崩特性,利用UIS测试原理,通过功率半导体雪崩耐量测试台,对几大主流制造商的SiC MOSFET器件进行了毁坏性和非毁坏性的雪崩测试。通过测试,发现了同步信号高频震荡和雪崩电流采样不可靠的问题,提出了外接电流探头、与同步信号隔离的方法,改善了雪崩测试的可靠性。  相似文献   

4.
为使SiC MOSFET在应用中安全可靠的工作,通过对SiC MOSFET开关特性的分析,设计了一种SiC MOSFET驱动电路。该电路具有结构简单、实用性强、速度快、输出功率大等特点。另外,在高功率、高频等特殊环境下工作,为了提高SiC MOSFET的可靠性,还对器件过载保护电路进行研究。通过Pspice软件仿真实验,发现过载保护电路可以有效地保护器件不受损坏。最后,搭建双脉冲实验平台,验证驱动电路的基本功能并测试采用不同栅极电阻时对SiC MOSFET开关特性的影响。实验结果表明:该电路具有良好的驱动能力。  相似文献   

5.
SiC MOSFET可以大幅提升变流器的效率和功率密度,在高频、高温、高压等领域有较好的应用前景。但是,由于其短路耐受时间短、特性退化现象严重以及失效机理模糊等因素,致使SiC MOSFET的普及应用受到了限制。因此,探究SiC MOSFET短路失效与特性退化的机理,可以为SiC MOSFET器件的应用及其保护电路的设计提供指导,具有重要的研究价值。该文首先归纳SiC MOSFET的短路故障类型,并针对其中一种典型的短路故障进行详细的特性分析。在此基础上,论述SiC MOSFET单次短路故障后存在的两种典型失效模式,综述其在两种失效模式下的失效机理以及影响因素。其次,对SiC MOSFET经历重复短路应力后器件特性退化机理的研究现状进行系统的总结。最后指出当前SiC MOSFET短路失效与特性退化的研究难点,展望SiC MOSFET短路特性研究的发展趋势。  相似文献   

6.
为使SiC MOSFET在应用中安全可靠的工作,通过对SiC MOSFET开关特性的分析,设计了一种SiC MOSFET驱动电路。该电路具有结构简单、实用性强、速度快、输出功率大等特点。另外,在高功率、高频等特殊环境下工作,为了提高SiC MOSFET的可靠性,还对器件过载保护电路进行研究。通过Pspice软件仿真实验,发现过载保护电路可以有效地保护器件不受损坏。最后,搭建双脉冲实验平台,验证驱动电路的基本功能并测试采用不同栅极电阻时对SiC MOSFET开关特性的影响。实验结果表明:该电路具有良好的驱动能力。  相似文献   

7.
短路能力是衡量功率半导体器件(IGBT、SiC MOSFET等)性能的重要指标,然而SiC MOSFET的短路性能还没有得到充分的研究。为掌握SiC MOSFET在短路工况下的特性,设计一套SiC MOSFET非破坏性短路测试实验平台,从短路脉冲宽度、栅源极电压UGS、栅极电阻RG、漏源极电压UDS、杂散电感LS、壳温度TCASE等方面对1 200 V/36 A SiC MOSFET的短路特性进行全参数实验,综合评估和分析SiC MOSFET器件在不同参数下发生短路的开关瞬态特性。  相似文献   

8.
针对雪崩工况下碳化硅(SiC)金属-氧化物-半导体场效应晶体管(MOSFET)芯片温升大影响材料热参数变化,往往导致温度计算不准确的问题,提出计及材料热参数温度依赖性的芯片瞬态热网络模型.首先,分析SiC MOSFET芯片材料的温度依赖性,采用多项式拟合获取热参数随温度变化规律;其次,利用扫描电子显微镜获取SiC MOSFET芯片几何参数,建立芯片元胞模型并通过实验验证其准确性,获取雪崩过程电压电流波形;最后,考虑温度对材料热参数的影响,建立SiC MOSFET芯片瞬态热网络模型,揭示雪崩工况下芯片温度变化规律.结果表明,与不考虑温度影响模型相比,所建芯片瞬态热网络模型更能准确地反映雪崩全过程芯片温度变化,且芯片温度骤升主要体现在内部,外部影响少.  相似文献   

9.
为准确评估硅IGBT和碳化硅MOSFET等高压大功率器件不同电应力及热应力条件下的栅极可靠性,研制了实时测量皮安级栅极漏电流的高温栅偏(high temperature gate bias,HTGB)测试装置。此外,该测试装置具备阈值电压在线监测功能,可以更好地监测被测器件的状态以进行可靠性评估和失效分析。为初步验证测试装置的各项功能和可靠性,运用该测试装置对商用IGBT器件在相同温度应力不同电应力条件下进行分组测试。初步测试结果表明老化初期漏电流逐渐降低,最终漏电流大小与电压应力有良好的正相关性,栅偏电压越大,漏电流越大。该测试装置实现了碳化硅MOSFET器件和硅IGBT器件对高温栅偏的测试需求且适用于各种类型的封装。  相似文献   

10.
本文搭建了高压晶闸管反向恢复期脉冲作用实验平台与特性参数测试平台,研究了高压晶闸管在反向恢复期不同阶段遭受脉冲冲击过程中的特性参数变化规律,并对退化和失效晶闸管拆片分析,结果表明:反向恢复期脉冲作用下高压晶闸管退化或失效表现为阻断能力的退化或丧失,由此引起晶闸管漏电流剧增,漏电流可作为表征晶闸管状态变化的特征参量;反向恢复期初期和中期冲击失效器件芯片上可见明显击穿点;反向恢复期中期冲击阻断能力退化芯片上可见热应力作用形成的圆斑;反向恢复期末期冲击失效器件可在芯片边缘与绝缘橡胶相接处见雪崩击穿闪痕。#$NL关键词:高压晶闸管; 电压脉冲; 反向恢复期; 失效分析#$NL中图分类号:TM461.4  相似文献   

11.
对绝缘栅双极型晶体管(IGBT)在小电流开关测试失效进行了分析研究,对IGBT栅极和集电极的电压电流波形监测发现,IGBT在小电流开通时电压电流波形存在严重的振荡问题,电压幅值超过器件最大额定值,导致器件失效。分析了IGBT芯片电容和栅极电阻对小电流开通振荡的影响,通过对IGBT芯片结构进行改进,将小电流振荡抑制在安全值范围内,解决了IGBT小电流开通失效问题,改进后的IGBT器件性能参数和应用测试温升接近国外竞品。  相似文献   

12.
器件由于内部芯片失效而产生IGBT故障,且检测保护困难,大多只能在系统外特性上加以防护,本体还是会受较大损害。高压大功率IGBT模块内部由多芯片和大量键合线构成,器件功能失效很大部分是由铝键合线脱落或者断裂引起的。提早发现或辨知此类缺陷或失效导致的电气特性变化,是构建IGBT故障的先导判据条件,有利于规避潜在故障风险,提高IGBT利用可靠性。针对英飞凌6.5kV多芯片并联封装IGBT模块的布局结构和连接特点,分析连接寄生参数差异对芯片工作状态的影响。以模块内部芯片间键合线的杂散电感和栅极电容参数为研究对象,利用最小二乘法参数辨识机制,构建一种区分模块缺陷与失效的先导判据。研究IGBT模块和元胞栅极等效电路,分析键合线故障导致的电路参数和工作特性变化,通过采样栅极电压与电流数据,利用最小二乘法参数估计得到故障类型及杂散参数数值,通过仿真与实验验证了该方法的有效性。  相似文献   

13.
碳化硅MOSFETs开关速率快,耐压高,在逆变器应用领域前景广阔。平面栅MOSFETs因其成熟的工艺是最先被商业化的器件。在平面栅MOSFETs的设计中,降低导通电阻和提高芯片的电流密度是重要的开发目标。基于自主研制的1 200 V及1 700 V SiC MOSFETs,研究了载流子扩展层技术、JFET注入技术以及元胞结构对器件电学特性的影响。测试结果表明采用方形元胞设计的SiC MOSFET的电流明显大于采用条形元胞设计的电流,JFET注入对阈值电压的影响比载流子扩展层技术更小。  相似文献   

14.
SiC MOSFET可以大幅提升变流器的效率和功率密度,具有重要的应用前景。但是,一旦负荷侧或直流侧发生短路,以及串扰引起的误导通,都会导致上下桥臂直通。因此,评估SiC MOSFET器件的短路耐受能力,研究直流母线电压和环境温度对短路耐受时间、临界短路能量的影响规律,可给SiC MOSFET器件的应用及其保护电路的设计提供指导,具有重要的研究价值。该文首先详细阐述SiC MOSFET硬开关短路过程的机理,随后搭建相应的测试平台,并选取两种额定电压、电流相近的商业化SiC MOSFET器件,在不同直流母线电压和环境温度条件下,评估短路电流的特性。实验结果表明,随着直流母线电压的增加或环境温度的升高,短路耐受时间降低;临界短路能量随着温度的升高而降低,但受直流母线电压的影响较小。基于器件的物理结构和Spice模型,建立不同尺度的热网络模型,根据实验数据计算短路过程的损耗,并输入到具体的热网络中,得到短路过程芯片的层间温度分布,热仿真结果表明芯片在结温800℃左右发生热击穿,这一失效温度对应的短路耐受时间和实验结果基本吻合。  相似文献   

15.
受内部寄生参数与结电容的影响,碳化硅(SiC)功率器件在高速开关过程中存在极大的电流电压过冲与高频开关振荡,严重影响了SiC基变换器的运行可靠性。因此,该文首先对SiC MOSFET开关特性进行深入分析,揭示栅极电流与电流电压过冲的数学关系;然后提出一种变栅极电流的新型有源驱动电路;通过对SiC MOSFET开关瞬态的漏极电流变化率d Id/dt、漏-源极电压变换率d Vds/dt以及栅极电压Vgs的直接检测与反馈,在开关过程的电流和电压上升阶段对栅极电流进行主动调节,抑制电流电压过冲与振荡;最后在多个工况下对本文所提方案进行实验验证。结果表明,与常规驱动方案相比,该文方法减小了30%~50%的电流电压过冲,有效抑制振荡与电磁干扰,提高了SiC MOSFET变换器的运行可靠性。  相似文献   

16.
碳化硅(SiC)功率金属-氧化物半导体场效应管(MOSFET)以其优越的性能受到广泛关注,但受限于器件设计和工艺技术水平,器件的潜力尚未得到充分发挥。介绍了SiC功率MOSFET的结构设计和加工工艺,采用一氧化氮(NO)栅氧退火工艺技术研制出击穿电压为1 800 V、比导通电阻为8mΩ·cm~2的SiC MOSFET器件,测试评价了器件的直流和动态特性,关断特性显著优于Si IGBT。评估了SiC MOSFET器件栅氧结构的可靠性,器件的栅氧介质寿命及阈值电压稳定性均达到工程应用要求。  相似文献   

17.
在电力电子系统中,因器件击穿、硬件电路缺陷或系统控制失误导致碳化硅(SiC)金属氧化物半导体场效应晶体管(MOSFET)误开通时,桥臂电流回路中多个器件处于开通状态,形成串联短路故障.该文以SiC MOSFET半桥电路为研究对象,详细介绍SiC MOSFET串联短路的动态过程,理论分析负载电流、栅极驱动电压和结温温升对SiC MOSFET短路动态特性的影响规律,推导出SiC MOSFET分压模型,并采用仿真模型进行验证.实验基于1200V/80A SiC MOSFET测试平台验证电路参数对短路损耗和结温分布的影响.理论与实验结果表明,SiC MOSFET串联短路分压特性对电路参数具有较高敏感度,漏极电压与漏极电流不平衡动态变化会改变器件短路损耗,进而影响结温温升,造成串联短路SiC MOSFET不稳定变化.  相似文献   

18.
长期以来,栅极老化一直是SiC MOSFET器件可靠性研究的关键,而偏置温度不稳定性则是栅极老化的重要现象。由于栅极老化的偏置温度不稳定性存在应力撤出后的恢复现象,如能在可靠性实验中快速、准确地监测SiC MOSFET器件的栅极老化变化量,对可靠性研究具有重要意义。因此,文中提出一种新的栅极老化监测方法。该方法以体效应下的阈值电压VTH(body)为基础,建立理论模型来描述VTH(body)和栅极老化之间的关系。提出在栅极电压开关过程中从体二极管电压–栅极电压曲线中得到VTH(body)的方法,并详细研究实验参数对VTH(body)的影响。此外,通过高温栅偏实验对VTH(body)的实用价值进行验证,并与栅极老化参数阈值电压VTH进行对比。实验结果证明,提出的新型栅极老化监测方法可以实现栅极老化的快速、准确及非恒温环境监测。  相似文献   

19.
碳化硅(SiC)金属氧化物半导体场效应晶体管(MOSFET)为高性能电力电子技术提供了技术保障,其短路承受能力是进一步提升电力电子变换器可靠性的关键;特别是在大功率场合,经常将SiC MOSFET并联使用,然而影响并联SiC器件短路振荡的关键因素并不十分明确,振荡机理有待进一步研究。此处以并联SiC MOSFET为研究对象,建立在短路工况下的等效数学模型,分析影响并联短路特性的关键因素并进行实验验证,归纳短路振荡机理。理论分析与实验结果表明,当并联SiC MOSFET发生短路故障时,栅极驱动电阻和功率回路杂散电感是导致器件并联系统振荡的主要因素,过小的栅极驱动电阻使得并联系统振荡频率和尖峰增大;过大的功率回路杂散电感导致系统振荡频率降低,而振荡尖峰增大,系统的剧烈振荡不利于SiC MOSFET稳定性提高。  相似文献   

20.
与传统硅基器件相比,碳化硅(SiC)器件的开关速度得到大幅改善,提高了变换器的功率密度与效率。然而过大的开关频率引起更为严重的栅极串扰问题,造成器件失效。分析了SiC金属-氧化物-半导体场效应晶体管(MOSFET)的开关过程与串扰产生原理,详述其设计过程,分析了外并电容的抑制串扰驱动电路,最后设计出一种带有信号隔离功能的可抑制栅极串扰的负压驱动电路。实验结果表明,所设计的SiC MOSFET驱动电路的驱动波形高低电平分明,而且有效抑制了栅极串扰问题,大幅减小器件的开关延时时间,降低了开关损耗。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号