首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Triple-negative breast cancer (TNBC) is a heterogeneous disease that accounts for 10–15% of all breast cancer cases. Within TNBC, the treatment of basal B is the most challenging due to its highly invasive potential, and thus treatments to suppress metastasis formation in this subgroup are urgently needed. However, the mechanisms underlying the metastatic ability of TNBC remain unclear. In the present study, we investigated the role of Aurora A and Bcl-xL in regulating basal B cell invasion. We found gene amplification and elevated protein expression in the basal B cells, which also showed increased invasiveness in vitro, compared to basal A cells. Chemical inhibition of Aurora A with alisertib and siRNA-mediated knockdown of BCL2L1 decreased the number of invading cells compared to non-treated cells in basal B cell lines. The analysis of the correlation between AURKA and BCL2L1 expression in TNBC and patient survival revealed significantly decreased relapse-free survival (n = 534, p = 0.012) and distant metastasis-free survival (n = 424, p = 0.017) in patients with primary tumors exhibiting a high combined expression of AURKA and BCL2L1. Together, our findings suggest that high levels of Aurora A and Bcl-xL promote metastasis, and inhibition of these proteins may suppress metastasis and improve patient survival in basal B TNBC.  相似文献   

2.
Patients with muscle-invasive urothelial carcinoma achieving pathological complete response (pCR) upon neoadjuvant chemotherapy (NAC) have improved prognosis. Molecular subtypes of bladder cancer differ markedly regarding sensitivity to cisplatin-based chemotherapy and harbor FGFR treatment targets to various content. The objective of the present study was to evaluate whether preoperative assessment of molecular subtype as well as FGFR target gene expression is predictive for therapeutic outcome—rate of ypT0 status—to justify subsequent prospective validation within the “BladderBRIDGister”. Formalin-fixed paraffin-embedded (FFPE) tissue specimens from transurethral bladder tumor resections (TUR) prior to neoadjuvant chemotherapy and corresponding radical cystectomy samples after chemotherapy of 36 patients were retrospectively collected. RNA from FFPE tissues were extracted by commercial kits, Relative gene expression of subtyping markers (e.g., KRT5, KRT20) and target genes (FGFR1, FGFR3) was analyzed by standardized RT-qPCR systems (STRATIFYER Molecular Pathology GmbH, Cologne). Spearman correlation, Kruskal–Wallis, Mann–Whitney and sensitivity/specificity tests were performed by JMP 9.0.0 (SAS software). The neoadjuvant cohort consisted of 36 patients (median age: 69, male 83% vs. female 17%) with 92% of patients being node-negative during radical cystectomy after 1 to 4 cycles of NAC. When comparing pretreatment with post-treatment samples, the median expression of KRT20 dropped most significantly from DCT 37.38 to 30.65, which compares with a 128-fold decrease. The reduction in gene expression was modest for other luminal marker genes (GATA3 6.8-fold, ERBB2 6.3-fold). In contrast, FGFR1 mRNA expression increased from 33.28 to 35.88 (~6.8-fold increase). Spearman correlation revealed positive association of pretreatment KRT20 mRNA levels with achieving pCR (r = 0.3072: p = 0.0684), whereas pretreatment FGFR1 mRNA was associated with resistance to chemotherapy (r = −0.6418: p < 0.0001). Hierarchical clustering identified luminal tumors of high KRT20 mRNA expression being associated with high pCR rate (10/16; 63%), while the double-negative subgroup with high FGFR1 expression did not respond with pCR (0/9; 0%). Molecular subtyping distinguishes patients with high probability of response from tumors as resistant to neoadjuvant chemotherapy. Targeting FGFR1 in less-differentiated bladder cancer subgroups may sensitize tumors for adopted treatments or subsequent chemotherapy.  相似文献   

3.
Background: The interleukin-1-receptor antagonist IL1RA (encoded by the IL1RN gene) is a potent competitive antagonist to interleukin-1 (IL1) and thereby is mainly involved in the regulation of inflammation. Previous data indicated a role of IL1RA in muscle-invasive urothelial carcinoma of the bladder (UCB) as well as an IL1-dependent decrease in tissue barrier function, potentially contributing to cancer cell invasion. Objective: Based on these observations, here we investigated the potential roles of IL1RA, IL1A, and IL1B in bladder cancer cell invasion in vitro. Methods: Cell culture, real-time impedance sensing, invasion assays (Boyden chamber, pig bladder model), qPCR, Western blot, ELISA, gene overexpression. Results: We observed a loss of IL1RA expression in invasive, high-grade bladder cancer cell lines T24, UMUC-3, and HT1197 while IL1RA expression was readily detectable in the immortalized UROtsa cells, the non-invasive bladder cancer cell line RT4, and in benign patient urothelium. Thus, we modified the invasive human bladder cancer cell line T24 to ectopically express IL1RA, and measured changes in cell migration/invasion using the xCELLigence Real-Time-Cell-Analysis (RTCA) system and the Boyden chamber assay. The real-time observation data showed a significant decrease of cell migration and invasion in T24 cells overexpressing IL1RA (T24-IL1RA), compared to cells harboring an empty vector (T24-EV). Concurrently, tumor cytokines, e.g., IL1B, attenuated the vascular endothelial barrier, which resulted in a reduction of the Cell Index (CI), an impedance-based dimensionless unit. This reduction could be reverted by the simultaneous incubation with IL1RA. Moreover, we used an ex vivo porcine organ culture system to evaluate cell invasion capacity and showed that T24-IL1RA cells showed significantly less invasive capacity compared to parental T24 cells or T24-EV. Conclusions: Taken together, our results indicate an inverse correlation between IL1RA expression and tumor cell invasive capacity and migration, suggesting that IL1RA plays a role in bladder carcinogenesis, while the exact mechanisms by which IL1RA influences tumor cells migration/invasion remain to be clarified in future studies. Furthermore, we confirmed that real-time impedance sensing and the porcine ex vivo organ culture methods are powerful tools to discover differences in cancer cell migration and invasion.  相似文献   

4.
Several central nervous system (CNS) drugs exhibit potent anti-cancer activities. This study aimed to design a novel model of combination that combines different CNS agents and antineoplastic drugs (5-fluorouracil (5-FU) and paclitaxel (PTX)) for colorectal and breast cancer therapy, respectively. Cytotoxic effects of 5-FU and PTX alone and in combination with different CNS agents were evaluated on HT-29 colon and MCF-7 breast cancer cells, respectively. Three antimalarials alone and in combination with 5-FU were also evaluated in HT-29 cells. Different schedules and concentrations in a fixed ratio were added to the cultured cells and incubated for 48 h. Cell viability was evaluated using MTT and SRB assays. Synergism was evaluated using the Chou-Talalay, Bliss Independence and HSA methods. Our results demonstrate that fluphenazine, fluoxetine and benztropine have enhanced anticancer activity when used alone as compared to being used in combination, making them ideal candidates for drug repurposing in colorectal cancer (CRC). Regarding MCF-7 cells, sertraline was the most promising candidate alone for drug repurposing, with the lowest IC50 value. For HT-29 cells, the CNS drugs sertraline and thioridazine in simultaneous combination with 5-FU demonstrated the strongest synergism among all combinations. In MCF-7 breast cancer cells, the combination of fluoxetine, fluphenazine and benztropine with PTX resulted in synergism for all concentrations below IC50. We also found that the antimalarial artesunate administration prior to 5-FU produces better results in reducing HT-29 cell viability than the inverse drug schedule or the simultaneous combination. These results demonstrate that CNS drugs activity differs between the two selected cell lines, both alone and in combination, and support that some CNS agents may be promising candidates for drug repurposing in these types of cancers. Additionally, these results demonstrate that 5-FU or a combination of PTX with CNS drugs should be further evaluated. These results also demonstrate that antimalarial drugs may also be used as antitumor agents in colorectal cancer, besides breast cancer.  相似文献   

5.
Bladder cancer (BC) is characterised by a high recurrence and progression rate. However, the molecular mechanisms of BC progression remain poorly understood. BCL9L, a coactivator of β-catenin was mutated in the 5′ and 3′ untranslated regions (UTRs). We assessed the influence of UTRs mutations on BCL9L, and the role of BCL9L and Wnt/β-catenin signalling in BC cells. UTR mutations were analysed by a luciferase reporter. BCL9L protein was assessed by immunohistochemistry in BC tissues. Cell proliferation was examined by crystal violet staining and by the spheroid model. Moreover, migration and invasion were analysed in real-time using the xCelligence RTCA system. The A > T mutation at 3′ UTR of BCL9L reduces the luciferase reporter mRNA expression and activity. BCL9L is predominantly increased in dysplastic urothelial cells and muscle-invasive BC. Knockdown of BCL9L and inhibition of Wnt/β-catenin signalling significantly repress the proliferation, migration and invasion of Cal29 and T24. In addition, BCL9L knockdown reduces mRNA level of Wnt/β-catenin target genes in Cal29 but not in T24 cells. BCL9L and Wnt/β-catenin signalling play an oncogenic role in bladder cancer cells and seems to be associated with BC progression. Nevertheless, the involvement of BCL9L in Wnt/β-catenin signalling is cell-line specific.  相似文献   

6.
Pharmacological inhibition of the enzyme activity targeting carbonic anhydrases (CAs) demonstrated antiglaucoma and anticancer effects through pH control. Recently, we reported a series of indole-based benzenesulfonamides as potent CA inhibitors. The present study aimed to evaluate the antitumor effects of these compounds against various cancer cell lines, including breast cancer (MDA-MB-231, MCF-7, and SK-BR-3), lung cancer (A549), and pancreatic cancer (Panc1) cells. Overall, more potent cytotoxicity was observed on MCF-7 and SK-BR-3 cells than on lung or pancreatic cancer cells. Among the 15 compounds tested, A6 and A15 exhibited potent cytotoxic and antimigratory activities against MCF-7 and SK-BR-3 cells in the CoCl2-induced hypoxic condition. While A6 and A15 markedly reduced the viability of control siRNA-treated cells, these compounds could not significantly reduce the viability of CA IX-knockdown cells, suggesting the role of CA IX in their anticancer activities. To assess whether these compounds exerted synergism with a conventional anticancer drug doxorubicin (DOX), the cytotoxic effects of A6 or A15 combined with DOX were analyzed using Chou−Talalay and Bliss independence methods. Our data revealed that both A6 and A15 significantly enhanced the anticancer activity of DOX. Among the tested pairs, the combination of DOX with A15 showed the strongest synergism on SK-BR-3 cells. Moreover, this combination further attenuated cell migration compared to the respective drug. Collectively, our results demonstrated that A6 and A15 suppressed tumor growth and cell migration of MCF-7 and SK-BR-3 cells through inhibition of CA IX, and the combination of these compounds with DOX exhibited synergistic cytotoxic effects on these breast cancer cells. Therefore, A6 and A15 may serve as potential anticancer agents alone or in combination with DOX against breast cancer.  相似文献   

7.
RRM1—an important DNA replication/repair enzyme—is the primary molecular gemcitabine (GEM) target. High RRM1-expression associates with gemcitabine-resistance in various cancers and RRM1 inhibition may provide novel cancer treatment approaches. Our study elucidates how RRM1 inhibition affects cancer cell proliferation and influences gemcitabine-resistant bladder cancer cells. Of nine bladder cancer cell lines investigated, two RRM1 highly expressed cells, 253J and RT112, were selected for further experimentation. An RRM1-targeting shRNA was cloned into adenoviral vector, Ad-shRRM1. Gene and protein expression were investigated using real-time PCR and western blotting. Cell proliferation rate and chemotherapeutic sensitivity to GEM were assessed by MTT assay. A human tumor xenograft model was prepared by implanting RRM1 highly expressed tumors, derived from RT112 cells, in nude mice. Infection with Ad-shRRM1 effectively downregulated RRM1 expression, significantly inhibiting cell growth in both RRM1 highly expressed tumor cells. In vivo, Ad-shRRM1 treatment had pronounced antitumor effects against RRM1 highly expressed tumor xenografts (p < 0.05). Moreover, combination of Ad-shRRM1 and GEM inhibited cell proliferation in both cell lines significantly more than either treatment individually. Cancer gene therapy using anti-RRM1 shRNA has pronounced antitumor effects against RRM1 highly expressed tumors, and RRM1 inhibition specifically increases bladder cancer cell GEM-sensitivity. Ad-shRRM1/GEM combination therapy may offer new treatment options for patients with GEM-resistant bladder tumors.  相似文献   

8.
Cancer is one of the leading cause of lethality worldwide, CRC being the third most common cancer reported worldwide, with 1.85 million cases and 850,000 deaths annually. As in all other cancers, kinases are one of the major enzymes that play an essential role in the incidence and progression of CRC. Thus, using multi-kinase inhibitors is one of the therapeutic strategies used to counter advanced-stage CRC. Regorafenib is an FDA-approved drug in the third-line therapy of refractory metastatic colorectal cancer. Acquired resistance to cancers and higher toxicity of these drugs are disadvantages to the patients. To counter this, combination therapy is used as a strategy where a minimal dose of drugs can be used to get a higher efficacy and reduce drug resistance development. Ruthenium-based compounds are observed to be a potential alternative to platinum-based drugs due to their significant safety and effectiveness. Formerly, our lab reported Ru-1, a ruthenium-based compound, for its anticancer activity against multiple cancer cells, such as HepG2, HCT116, and MCF7. This study evaluates Ru-1′s activity against regorafenib-resistant HCT116 cells and as a combination therapeutic with regorafenib. Meanwhile, the mechanism of the effect of Ru-1 alone and with regorafenib as a combination is still unknown. In this study, we tested a drug combination (Ru-1 and regorafenib) against a panel of HT29, HCT116, and regorafenib-resistant HCT116 cells. The combination showed a synergistic inhibitory activity. Several mechanisms underlying these numerous synergistic activities, such as anti-proliferative efficacy, indicated that the combination exhibited potent cytotoxicity and enhanced apoptosis induction. Disruption of mitochondrial membrane potential increased intracellular ROS levels and decreased migratory cell properties were observed. The combination exhibited its activity by regulating PI3K/Akt and p38 MAP kinase signalling. This indicates that the combination of REG/Ru-1 targets cancer cells by modulating the PI3K/Akt and ERK signalling.  相似文献   

9.
Prostate and lung cancers are among the most common cancer types, and they still need more therapeutics. For this purpose, saquinavir (SAQ) was tested alone and in combination with 5-fluorouracil (5-FU). PC-3 and A549 cells were exposed to increasing concentrations of both drugs alone or in combination, with simultaneous or sequential administration. Cell viability was obtained using the MTT assay and synergism values using CompuSyn software. Results showed that SAQ was the more cytotoxic of both drugs in PC-3 cells, while 5-FU was the most cytotoxic in A549 cells. When these drugs were used in combination, the more synergistic combination in PC-3 cells was the IC50 of SAQ with various concentrations of 5-FU, particularly when 5-FU was only applied 24 h later. Meanwhile for A549 the most promising combination was 5-FU with delayed SAQ, but with a weaker effect than all combinations demonstrated in PC-3 cells. These results demonstrate that SAQ could be used as a new repurposed drug for the treatment of prostate cancer and this treatment potential could be even greater if SAQ is combined with the anticancer drug 5-FU, while for lung cancer it is not as efficient and, therefore, not of as much interest.  相似文献   

10.
Patients with differentiated thyroid cancer (DTC) usually have good prognosis, while those with advanced disease have poor clinical outcomes. This study aimed to investigate the antitumor effects of combination therapy with lenvatinib and 131I (CTLI) using three different types of DTC cell lines with different profiling of sodium iodide symporter (NIS) status. The radioiodine accumulation study revealed a significantly increased radioiodine uptake in K1-NIS cells after lenvatinib treatment, while there was almost no uptake in K1 and FTC-133 cells. However, lenvatinib administration before radioiodine treatment decreased radioiodine uptake of K1-NIS xenograft tumor in the in vivo imaging study. CTLI synergistically inhibited colony formation and DTC cell migration, especially in K1-NIS cells. Finally, 131I treatment followed by lenvatinib administration significantly inhibited tumor growth of the NIS-expressing thyroid cancer xenograft model. These results provide important clinical implications for the combined therapy that lenvatinib should be administered after 131I treatment to maximize the treatment efficacy. Our synergistic treatment effects by CTLI suggested its effectiveness for RAI-avid thyroid cancer, which retains NIS function. This potential combination therapy suggests a powerful and tolerable new therapeutic strategy for advanced thyroid cancer.  相似文献   

11.
12.
The C-C chemokine ligand 2 (CCL2) stimulates migration, proliferation, and invasion of prostate cancer (PCa) cells, and its signaling also plays a role in the activation of osteoclasts. Therefore targeting CCL2 signaling in regulation of tumor progression in bone metastases is an area of intense research. The objective of our study was to investigate the efficacy of CCL2 blockade by neutralizing antibodies to inhibit the growth of PCa in bone. We used a preclinical model of cancer growth in the bone in which PCa C4-2B cells were injected directly into murine tibiae. Animals were treated for ten weeks with neutralizing anti-CCL2 antibodies, docetaxel, or a combination of both, and then followed an additional nine weeks. CCL2 blockade inhibited the growth of PCa in bone, with even more pronounced inhibition in combination with docetaxel. CCL2 blockade also resulted in increases in bone mineral density. Furthermore, our results showed that the tumor inhibition lasted even after discontinuation of the treatment. Our data provide compelling evidence that CCL2 blockade slows PCa growth in bone, both alone and in combination with docetaxel. These results support the continued investigations of CCL2 blockade as a treatment for advanced metastatic PCa.  相似文献   

13.
Cancer eradication and clinical outcome of immunotherapy depend on tumor cell immunogenicity, including HLA class I (HLA-I) and PD-L1 expression on malignant cells, and on the characteristics of the tumor microenvironment, such as tumor immune infiltration and stromal reaction. Loss of tumor HLA-I is a common mechanism of immune escape from cytotoxic T lymphocytes and is linked to cancer progression and resistance to immunotherapy with the inhibitors of PD-L1/PD-1 signaling. Here we observed that HLA-I loss in bladder tumors is associated with T cell exclusion and tumor encapsulation with stromal elements rich in FAP-positive cells. In addition, PD-L1 upregulation in HLA-I negative tumors demonstrated a correlation with high tumor grade and worse overall- and cancer-specific survival of the patients. These changes define common immuno-morphological signatures compatible with cancer immune escape and acquired resistance to therapeutic interventions across different types of malignancy. They also may contribute to the search of new targets for cancer treatment, such as FAP-expressing cancer-associated fibroblasts, in refractory bladder tumors.  相似文献   

14.
15.
Papaverine (PPV) is a benzylisoquinoline alkaloid isolated from Papaver somniferum that exerts antiproliferative activity. However, several questions remain regarding the biochemical pathways affected by PPV in tumourigenic cells. In this study, the influence of PPV on cell migration (light microscopy), expression of vascular endothelial growth factor (VEGF) B, VEGF R1, VEGF R2, and phosphorylated focal adhesion kinase (pFAK) were investigated using spectrophotometry in MDA-MB-231-, A549- and DU145 cell lines. The migration assay revealed that, after 48 h, PPV (100 µM) reduced cell migration to 81%, 91%, and 71% in MDA-MB-231-, A549-, and DU145 cells, respectively. VEGF B expression was reduced to 0.79-, 0.71-, and 0.73-fold after 48 h of exposure to PPV in MDA-MB-231-, A549- and DU145 cells, while PPV exposure of 48 h increased VEGF R1 expression in MDA-MB-231- and DU145 cells to 1.38 and 1.46. A fold decrease in VEGF R1 expression was observed in A549 cells to 0.90 after exposure to 150 µM. No statistically significant effects were observed on VEGF R2- and FAK expression after exposure to PPV. This study contributes to the understanding of the effects of a phytomedicinal alkaloid compound in cancer cells and may provide novel approaches to the application of non-addictive alkaloids.  相似文献   

16.
Mesothelin (MSLN) overexpression (OE) is a frequent finding in ovarian carcinomas and increases cell survival and tumor aggressiveness. Since cancer stem cells (CSCs) contribute to pathogenesis, chemoresistance and malignant behavior in ovarian cancer (OC), we hypothesized that MSLN expression could be creating a favorable environment that nurtures CSCs. In this study, we analyzed the expression of MSLN and CSC markers SOX2 and ALDH1 by immunohistochemistry (IHC) in different model systems: primary high-grade serous carcinomas (HGSCs) and OC cell lines, including cell lines that were genetically engineered for MSLN expression by either CRISPR-Cas9-mediated knockout (Δ) or lentivirus-mediated OE. Cell lines, wild type and genetically engineered, were evaluated in 2D and 3D culture conditions and xenografted in nude mice. We observed that MSLN was widely expressed in HGSC, and restricted expression was observed in OC cell lines. In contrast, SOX2 and ALDH1 expression was limited in all tissue and cell models. Most importantly, the expression of CSC markers was independent of MSLN expression, and manipulation of MSLN expression did not affect CSC markers. In conclusion, MSLN expression is not involved in driving the CSC phenotype.  相似文献   

17.
Clinical outcomes of conventional drug combinations are not ideal due to high toxicity to healthy tissues. Cisplatin (CDDP) is the standard component for many cancer treatments, yet its principal dose-limiting side effect is nephrotoxicity. Thus, CDDP is commonly used in combination with other drugs, such as the autophagy inhibitor chloroquine (CQ), to enhance tumor cell killing efficacy and prevent the development of chemoresistance. In addition, nanocarrier-based drug delivery systems can overcome chemotherapy limitations, decreasing side effects and increasing tumor accumulation. The aim of this study was to evaluate the toxicity of CQ and CDDP against tumor and non-tumor cells when used in a combined treatment. For this purpose, two types of micelles based on Pluronic® F127 hybrid dendritic–linear–dendritic block copolymers (HDLDBCs) modified with polyester or poly(esteramide) dendrons derived from 2,2′-bis(hydroxymethyl)propionic acid (HDLDBC-bMPA) or 2,2′-bis(glycyloxymethyl)propionic acid (HDLDBC-bGMPA) were explored as delivery nanocarriers. Our results indicated that the combined treatment with HDLDBC-bMPA(CQ) or HDLDBC-bGMPA(CQ) and CDDP increased cytotoxicity in tumor cells compared to the single treatment with CDDP. Encapsulations demonstrated less short-term cytotoxicity individually or when used in combination compared to the free drugs. However, and more importantly, a low degree of cytotoxicity against non-tumor cells was maintained, even when drugs were given simultaneously.  相似文献   

18.
Although anti-cancer properties of the natural compound curcumin have been reported, low absorption and rapid metabolisation limit clinical use. The present study investigated whether irradiation with visible light may enhance the inhibitory effects of low-dosed curcumin on prostate cancer cell growth, proliferation, and metastasis in vitro. DU145 and PC3 cells were incubated with low-dosed curcumin (0.1–0.4 µg/mL) and subsequently irradiated with 1.65 J/cm2 visible light for 5 min. Controls remained untreated and/or non-irradiated. Cell growth, proliferation, apoptosis, adhesion, and chemotaxis were evaluated, as was cell cycle regulating protein expression (CDK, Cyclins), and integrins of the α- and β-family. Curcumin or light alone did not cause any significant effects on tumor growth, proliferation, or metastasis. However, curcumin combined with light irradiation significantly suppressed tumor growth, adhesion, and migration. Phosphorylation of CDK1 decreased and expression of the counter-receptors cyclin A and B was diminished. Integrin α and β subtypes were also reduced, compared to controls. Irradiation distinctly enhances the anti-tumor potential of curcumin in vitro and may hold promise in treating prostate cancer.  相似文献   

19.
Ovarian cancer (OC) accounts for approximately 4% of cancer deaths in women worldwide and is the deadliest gynecologic malignancy. High-grade serous ovarian cancer (HGSOC) is the most predominant ovarian cancer, in which BRCA1/2 gene mutation ranges from 3 to 27%. PARP inhibitors (PARPi) have shown promising results as a synthetically lethal therapeutic approach for BRCA mutant and recurrent OC in clinical use. However, emerging data indicate that BRCA-deficient cancers may be resistant to PARPi, and the mechanisms of this resistance remain elusive. We found that amplification of KRAS likely underlies PARPi resistance in BRCA2-deficient HGSOC. Our data suggest that PLK1 inhibition restores sensitivity to PARPi in HGSOC with KRAS amplification. The sequential combination of PLK1 inhibitor (PLK1i) and PARPi drastically reduces HGSOC cell survival and increases apoptosis. Furthermore, we were able to show that a sequential combination of PLK1i and PARPi enhanced the cellular apoptotic response to carboplatin-based chemotherapy in KRAS-amplified resistant HGSOC cells and 3D spheroids derived from recurrent ovarian cancer patients. Our results shed new light on the critical role of PLK1 in reversing PARPi resistance in KRAS-amplified HGSOC, and offer a new therapeutic strategy for this class of ovarian cancer patients where only limited options currently exist.  相似文献   

20.
The phosphoinositide-3-kinase (PI3K) pathway has widely been considered as a potential therapeutic target for head and neck cancer (HNC); however, the application of PI3K inhibitors is often overshadowed by the induction of drug resistance with unknown mechanisms. In this study, PII3K inhibitor resistant cancer cells were developed by prolonged culturing of cell lines with BEZ235, a dual PI3K and mammalian target of rapamycin (mTOR) inhibitor. The drug resistant HNC cells showed higher IC50 of the proliferation to inhibitors specifically targeting PI3K and/or mTOR, as compared to their parental cells. These cells also showed profound resistance to drugs of other classes. Molecular analysis revealed persistent activation of phosphorylated AKT at threonine 308 in the drug resistant cells and increased expression of markers for tumor-initiating cells. Interestingly, increased intra-cellular ROS levels were observed in the drug resistant cells. Among anti-oxidant molecules, the expression of SOD2 was increased and was associated with the ALDH-positive tumor-initiating cell features. Co-incubation of SOD inhibitors and BEZ235 decreased the stemness feature of the cells in vitro, as shown by results of the spheroid formation assay. In conclusion, dysregulation of SOD2 might contribute to the profound resistance to PI3K inhibitors and the other drugs in HNC cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号