首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The effect of MgO as a solid-solution additive in the sintering of Al2O3 was studied. The separate effects of the additive on densification and grain growth were assessed. Magnesia was found to increase the densification rate during sintering by a factor of 3 through a raising of the diffusion rate. The grain-size dependence of the densification rate indicated control primarily by grain-boundary diffusion. Magnesia also increased the grain growth rate during sintering by a factor of 2.5. The dependence of the grain growth rate on density and grain size suggested a mechanism of surface-diffusion-controlled pore drag. It was argued, therefore, that MgO enhanced grain growth by raising the surface diffusion coefficient. The effect of MgO on the densification rate/grain growth rate ratio was, therefore, found to be minimal and, consequently, MgO did not have a significant effect on the grain size/density trajectory during sintering. The role of MgO in the sintering of alumina was attributed mainly to its ability to lower the grain-boundary mobility.  相似文献   

2.
The effect of abnormal grain growth on the formation of amorphous films at grains boundaries was studied in a model system BaTiO3. 0.4 mol% TiO2-excess BaTiO3 powder compacts were sintered at 1380°C for various times up to 16 h. During the sintering, abnormal grains formed. With the growth of the abnormal grains, amorphous films formed and eventually thickened up to 19.2 nm at grain boundaries. The film formation is attributed to the accumulation of Ti solutes at grain boundaries with the grain growth, while the film thickening is mostly caused by the redistribution of liquid at triple junctions. Extended annealing of the 16-h-sintered sample at 1350°C for 15 days resulted in a thinning of the film to nearly 1.7 nm without a change in the grain size, showing an equilibrium thickness. This result demonstrates that the film thickness observed during the growth of the grain may not be the equilibrium thickness. The result further suggests that the shape of the abnormal grains, even when equiaxed, can differ from the equilibrium shape.  相似文献   

3.
Two-Step Sintering of Ceramics with Constant Grain-Size, I. Y2O3   总被引:1,自引:1,他引:0  
Isothermal and constant-grain-size sintering have been carried out to full density in Y2O3 with and without dopants, at as low as 40% of the homologous temperature. The normalized densification rate follows Herring's scaling law with a universal geometric factor that depends only on density. The frozen grain structure, however, prevents pore relocation commonly assumed in the conventional sintering models, which fail to describe our data. Suppression of grain growth but not densification is consistent with a grain boundary network pinned by triple-point junctions, which have a higher activation energy for migration than grain boundaries. Long transients in sintering and grain growth have provided further evidence of relaxation and threshold processes at the grain boundary/triple point.  相似文献   

4.
Supported membranes were prepared from different submicron alumina powders. The evolution of pore size, hardness and permeability were monitored after sintering the films at temperatures ranging from 1000 to 1400 °C. These functional properties and the microstructure of the films were compared with the free-standing membranes. Sintering at temperature range from 1000 to 1200 °C maintained the narrow, monomodal pore size distribution of the supported membranes. The effect of sintering temperature on the hardness of the membranes was weak. The permeability was also independent on the sintering temperature. When sintering temperature was raised up to 1300 and 1400 °C, the pore size increased significantly and distribution was changed to bimodal containing fraction of large pores. The hardness of the membranes increased while significant densification was not observed. Permeability increased due to the large pore size and the high porosity. In sintering of the free-standing membranes pore size remained almost unchanged, density increased when sintering temperature was raised, hardness was dependent on the density and permeability decreased continuously. The substrate did not have effect on the grain growth, which was dependent on the sintering temperature. Evolution of the properties of the free-standing membranes suggests local densification. The rigid substrate restricts the sintering shrinkage leading to densification of small areas. This local densification opens large flow channels between agglomerates. This increases the pore size, broadens the pore size distribution and increases the permeability. The macroscopic densification of the film is small.  相似文献   

5.
A highly packed barium titanate film with a thickness of 30 μm was prepared under 1000 g n ( g n , standard acceleration of free fall) via centrifugal sintering. Here, BaTiO3 particles were used as the source material, and LiF flux was co-added as a grain growth enhancer. The film was originally printed on a substrate by screen printing, and subsequently sintered. As the amount of flux increased, the film density also increased with remarkable grain growth. However, it was difficult to remove pores in conventional sintering even by the heavy addition of flux such as 20 wt%. In contrast, centrifugal sintering successfully compacted films (90% of theoretical density). The centrifugally sintered film possessed a relatively smooth surface and showed no flux segregation. These features of a centrifugally sintered film are thought to be attributed to the enhancement of particles' rearrangement at an elevated temperature by a centrifugal force.  相似文献   

6.
研究了超细Y-TZP和YSZ粉料成型体在烧结中期的晶粒生长、气孔生长和致密化行为.根据作者前文  相似文献   

7.
Model experiments have been conducted on a series of alumina samples in which the microstructures have been tailored to conform to the classical configuratins depicted in the models of final-stage sintering. Simultaneous measurements of sintered density, grain size, pore number density, and pore size distribution were made as a function of sintering time at constant temperature (1850°C). The data supported a model of grain-boundary-diffusion-controlled densification and surface-diffusion-controlled grain growth. An atom flux equation for grain-boundary diffusion transport was deduced from the data. The kinetics analysis highlights the importance of incorporating the number of pores per grain as an independent variable in mechanistic studies of final-stage sintering. The number of pores per unit volume was identified as a critical factor influencing densification kinetics. The effect of pore distribution on microstructure development was simulated for comparison with the data obtained from the model experiments.  相似文献   

8.
A novel bismuth-doped zinc oxide (ZnO) laminated structure is prepared in the present study. Seven layers with thickness ranging from 20 to 140 μm are laminated together with platinum (Pt) inner electrodes. The growth of Bi2O3-doped ZnO grains within a very limited space between Pt electrodes is investigated. The grain growth behavior outside the confinement of electrodes is also studied for comparison purposes. At the beginning of sintering, a similar grain growth behavior is observed at different locations of the laminated structure. However, as sintering proceeds, the rate of grain growth within the Pt inner electrodes is decreased because of the decrease of available transportation paths. The grains between the electrodes then develop into a columnar shape as they make contact with the electrodes above and below them. Both the grain size and its distribution decrease with decreasing layer thickness.  相似文献   

9.
Controlling residual amount of defects in transparent ceramics is a major challenge for laser applications. This study was focused on microstructural evolution of Nd:YAG ceramics during their reactive solid‐state sintering which was correlated to their optical transmittance. From microstructural observations, the microstructural maps and grain size‐density and grain size‐pore size sintering trajectories of Nd:YAG ceramics were established as a function of silica content. For densities higher than 99.7%, the occurrence of intragranular porosity was correlated to a critical pore radius of 0.16 μm. Silica appears to favor the formation of intragranular porosity which was attributed to the increasing of the grain growth rate compared with the densification one. An analytical model was established by coupling the analytical laws derived from sintering trajectories and the classical theory of light diffusion, allowing to correlate the microstructural features of transparent Nd:YAG ceramics to their optical properties.  相似文献   

10.
During the liquid-phase sintering of MgO-CaMgSiO4 systems in N2 atmosphere, the total porosity and the average pore size increase while the number of pores decreases. The negligible permeability of entrapped nitrogen through the liquid matrix and the observed linear relationship between the number of pores and that of the MgO grains suggest that the pores coalesce as a consequence of grain growth during sintering. An analysis of the balance between the pressure of the entrapped N2 gas and the capillary pressure shows that pore coalescence in turn causes the observed porosity increase. When Fe2O3 or Cr2O3 is added to MgO-CaMgSiO4, the pore size and the total porosity become larger or smaller, because the grain growth is accelerated or retarded, respectively.  相似文献   

11.
A quantitative assessment of the homogeneity of particle coordination in green bodies is achieved by addressing pore structures. Avoiding a coarser tail of the pore size distribution is important but insufficient for optimum sintering. Instead, the steepest slope of the main body of the distribution is responsible for a maximum density at lowest temperature, and further progress is enabled by minimizing interparticle spacing (the average pore size). Ranking different technologies with different associated pore size distributions, the same correlation holds for the impact of homogeneity on (i) sintering densification as (ii) for the onset of intense grain growth during the final sintering stage. For all of the investigated processing approaches the pore size distributions are observed to remain constant through the initial and intermediate states of sintering.  相似文献   

12.
When the grain size in partially sintered compacts of alumina was measured as a function of density, we found that the grain-growth behavior fell into two distinct regions. In the region where the porosity remained interconnected, grain growth was negligible; when the continuous pore network collapsed into isolated pores, grains grew rapidly. The transition in grain-growth behavior was observed at approximately 90% of theoretical density. A simple phenomenological method for obtaining the transition in grain growth is suggested. It is based on the idea that an abrupt increase in grain size should be accompanied by a significant decrease in the rate of sintering since the sintering rate changes as the third or fourth power of the grain size. The method consists of fitting the sintering data to an exponential function. The transition then appears as a change in the time constant for the exponential. The low rate of grain growth in the region where the pores are interconnected contradicts earlier work in the literature where significant grain growth during intermediate-stage sintering has been reported. This difference is explained in terms of the homogeneity of packing of our powder compacts, which were prepared by colloidal processing.  相似文献   

13.
Effect of Pore Distribution on Microstructure Development: I, Matrix Pores   总被引:1,自引:0,他引:1  
A model has been developed to describe the effect of the matrix (first-generation) pore distribution on microstructure development in the final stages of sintering. A model of simultaneous densification and grain growth was used to predict the effects of the number of pores per grain and the pore size distribution on microstructure evolution. Increasing the number of pores per grain was predicted to increase the densification rate, the grain growth rate, and the relative densification rate/grain growth rate ratio. Narrowing the pore size distribution was predicted to inhibit grain growth initially and to increase the densification rate indirectly. Overall, the pore distribution was predicted to have a strong influence on microstructure development and sintering kinetics.  相似文献   

14.
《Ceramics International》2017,43(2):1895-1903
This paper examined theoretically and experimentally packing behavior, sintering behavior and compressive mechanical properties of sintered bodies of the bimodal particle size system of 80 vol% large particles (351 nm diameter)–20 vol% small particles (156 nm diameter). The increased packing density as compared with the mono size system was explained by the packing of small particles in 6-coordinated pore spaces among large particles owing to the similar size relation between 6-coordinated spherical pore and small particle. The sintering between adjacent large particles dominated the whole shrinkage of the powder compact of the bimodal particle size system. However, the bimodal particle size system has a high grain growth rate because of the different curvatures of adjacent small and large particles. The derived theoretical equations for the compressive strengths of both mono size system and bimodal particle size system suggest that the increase in the grain boundary area and relative density by sintering dominate the compressive strength of a sintered porous alumina. The experimental compressive strengths were well explained by the proposed theoretical models. The strength of the bimodal particle size system was high at low sintering temperatures but was low at high sintering temperatures as compared with that of mono size system of large particles. This was explained by mainly the change of grain boundary area with grain growth. The stress–strain relationship of the bimodal particle size system showed an unique pseudo-ductile property. This was well explained by the curved inside stress distribution along the sample height. The inside stress decreases toward the bottom layer. The fracture of one layer of sintered grains over the top surface proceeds continuously with compressive time along the sample height when an applied stress reaches the critical fracture strength.  相似文献   

15.
Pore boundary tessellation and quantitative stereology were used to characterize microstructure evolution in ZrO2–3 mol%Y2O3 (3YSZ) that had been pressed to a green density of 46% and isothermally sintered at 1275°C for 0.1–10 h. Scanning electron micrographs showed that, relative to classical sintering models, the sintered 3YSZ microstructure was spatially heterogeneous, and that this heterogeneity affected the way in which the microstructure evolved during sintering. Pore boundary tessellation cell maps revealed the presence of dense regions within the microstructure that grew by the preferential elimination of smaller pores and resulted in larger more widely spaced porosity at longer sintering times. In consequence, the average pore separation distance increased much faster than the average grain size. This would call into question the use of the grain size as a measure of microstructural scale for the prediction of densification kinetics for this material.  相似文献   

16.
The influence of TiO2 additives on the sintering behavior of In2O3 ceramics has been investigated. TiO2 increases the densification rate, decreases the grain growth during the intermediate stage of sintering, and hinders the pore/boundary breakaway that can affect the final stage of sintering. For a given grain size, TiO2 shifts the grain size/density trajectory toward higher densities. TiO2 mainly acts by a second-phase mechanism, but it also may decrease the decomposition rate of In2O3.  相似文献   

17.
The compressive stress for the shrinkage of a large pore during sintering has been analyzed by combining the effects of the pore size, the ratio of pore size to grain size, and the coordination number of the pore. Alumina has been selected to illustrate this model. The result shows that the compressive stress is a positive and increasing quantity during the sintering process with an increasing value depending on the rate of grain growth and pore shrinkage.  相似文献   

18.
Precoarsening to Improve Microstructure and Sintering of Powder Compacts   总被引:1,自引:0,他引:1  
MgO and Al2O3 were sintered by two types of processes: a conventional isothermal sintering and a two-step sintering consisting of an initial low-temperature precoarsening treatment before conventional isothermal sintering. The final microstructure from two-step sintering can be more uniform and finer than that of compacts sintered conventionally. A narrow-size-distribution alumina powder was sintered under constant-heating-rate conditions, with and without a precoarsening treatment, and the results were compared. The differences between two-step and conventional processing were clarified by experiments on precoarsened and as-received ZnO powders. These compacts were precoarsened at 450°C for 90 h with virtually no increase in the overall density. The resulting grain size was 1.7 times the starting one, but the standard deviation of the precoarsened powder size distribution was smaller than that of the asreceived powder. Precoarsened compacts sintered to nearly full density showed improved homogeneity. The sintering stress of the precoarsened ZnO was approximately 0.8 that of the as-received one. A computational model has been used with two components of coarsening to describe the differences in pore spacing evolution between the precoarsened and the as-received system. The benefit of two-step sintering is attributed to the increase in uniformity resulting from precoarsening. The increased uniformity decreases sintering damage and allows the system to stay in the open porosity state longer, delaying or inhibiting additional coarsening (grain growth) during the final stage of densification. Two-step sintering is especially useful for nonuniform powder systems with a wide size distribution and is a simple and convenient method of making more uniform ceramic bodies without resorting to specialized powders or complicated heat schedules.  相似文献   

19.
The present investigation gives a quantitative correlation between different green microstructures, and their sintering behaviour during spark plasma sintering. The green microstructures were elaborated via various green shaping processes such as direct casting and direct coagulation casting compared to uniaxial compaction of the as-received sub-micron grained corundum powder. Narrowing pore size distribution and reducing pore size (≈40 nm) in the green compact could favour cold densification during initial uniaxial pressing by grain sliding and rearrangement. This is attributed to the soft homogeneous touching network in direct-cast green samples. Consequently, grain growth was impeded and the onset of shrinkage was delayed. Moreover, the small pores and the narrow pore size distribution in the homogeneous green bodies led to higher final densities, with better optical properties compared to the less homogeneous green samples.  相似文献   

20.
We investigated the preparation of bulk dense nanocrystalline BaTiO3 and Ni–Cu–Zn ferrite ceramics using an unconventional two-step sintering strategy, which offers the advantage of not having grain growth while increasing density from about 75% to above 96%. Using nanosized powders, dense ferrite ceramics with a grain size of 200 nm and BaTiO3 with a grain size of 35 nm were obtained by two-step sintering. Like the previous studies on Y2O3, the different kinetics between densification diffusion and grain boundary network mobility leaves a kinetic window that can be utilized in the second-step sintering. Evidence indicates that low symmetry, ferroelectric structures still exist in nanograin BaTiO3 ceramics, and that saturation magnetization is the same in nanograin and coarse grain ferrite ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号