首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the significant recent increase in quantum-based optoelectronics device research, few deposition techniques can reliably create the required functional nanoscale systems. Atomic layer deposition (ALD) was used here to study the quantum effects attainable through the use of this ?ngstr?m-level controlled growth process. Size-dependent quantum confinement has been demonstrated using TiO(2) layers of nanoscale thickness applied to the surfaces of silicon wafers. TiO(2) films were deposited at 100?°C using TiCl(4) and H(2)O(2) in a viscous flow ALD reactor, at a rate of 0.61??/cycle. The low-temperature process was utilized to guarantee the amorphous deposition of TiO(2) layers and post-deposition thermal annealing was employed to promote crystallite-size modification. Hydrogen peroxide significantly reduced the residual chlorine that remained from a typical TiCl(4)-H(2)O ALD process at this temperature, down to 1.6%. Spectroscopic ellipsometry was used to quantify the optical properties both below and above the bandgap energy. A central composite design was employed to map the surface response of the film thickness-dependent bandgap shift for the as-deposited case and up to a thermal annealing temperature of 550?°C. The Brus model was used to develop a correlation between the amorphous TiO(2) film thickness and the quantum length to promote equivalent bandgap shifts.  相似文献   

2.
Al(2)O(3) and TiO(2) atomic layer deposition (ALD) were employed to develop an ultrathin barrier film on copper to prevent water corrosion. The strategy was to utilize Al(2)O(3) ALD as a pinhole-free barrier and to protect the Al(2)O(3) ALD using TiO(2) ALD. An initial set of experiments was performed at 177 °C to establish that Al(2)O(3) ALD could nucleate on copper and produce a high-quality Al(2)O(3) film. In situ quartz crystal microbalance (QCM) measurements verified that Al(2)O(3) ALD nucleated and grew efficiently on copper-plated quartz crystals at 177 °C using trimethylaluminum (TMA) and water as the reactants. An electroplating technique also established that the Al(2)O(3) ALD films had a low defect density. A second set of experiments was performed for ALD at 120 °C to study the ability of ALD films to prevent copper corrosion. These experiments revealed that an Al(2)O(3) ALD film alone was insufficient to prevent copper corrosion because of the dissolution of the Al(2)O(3) film in water. Subsequently, TiO(2) ALD was explored on copper at 120 °C using TiCl(4) and water as the reactants. The resulting TiO(2) films also did not prevent the water corrosion of copper. Fortunately, Al(2)O(3) films with a TiO(2) capping layer were much more resilient to dissolution in water and prevented the water corrosion of copper. Optical microscopy images revealed that TiO(2) capping layers as thin as 200 ? on Al(2)O(3) adhesion layers could prevent copper corrosion in water at 90 °C for ~80 days. In contrast, the copper corroded almost immediately in water at 90 °C for Al(2)O(3) and ZnO films by themselves on copper. Ellipsometer measurements revealed that Al(2)O(3) films with a thickness of ~200 ? and ZnO films with a thickness of ~250 ? dissolved in water at 90 °C in ~10 days. In contrast, the ellipsometer measurements confirmed that the TiO(2) capping layers with thicknesses of ~200 ? on the Al(2)O(3) adhesion layers protected the copper for ~80 days in water at 90 °C. The TiO(2) ALD coatings were also hydrophilic and facilitated H(2)O wetting to copper wire mesh substrates.  相似文献   

3.
The surface roughness of thin films is an important parameter related to the sticking behaviour of surfaces in the manufacturing of microelectomechanical systems (MEMS). In this work, TiO2 films made by atomic layer deposition (ALD) with the TiCl4-H2O process were characterized for their growth, roughness and crystallinity as function of deposition temperature (110-300 degrees C), film thickness (up to approximately 100 nm) and substrate (thermal SiO2, RCA-cleaned Si, Al2O3). TiO2 films got rougher with increasing film thickness and to some extent with increasing deposition temperature. The substrate drastically influenced the crystallization behaviour of the film: for films of about 20 nm thickness, on thermal SiO2 and RCA-cleaned Si, anatase TiO2 crystal diameter was about 40 nm, while on Al2O3 surface the diameter was about a micrometer. The roughness could be controlled from 0.2 nm up to several nanometers, which makes the TiO2 films candidates for adhesion engineering in MEMS.  相似文献   

4.
Wang CC  Kei CC  Perng TP 《Nanotechnology》2011,22(36):365702
The formation of TiO(2) nanotubes was conducted by atomic layer deposition (ALD) with tris-(8-hydroxyquinoline) gallium (GaQ(3)) nanowires as a template at different substrate temperatures, 50, 100, and 200?°C. TiO(2) nanotubes were formed only at 50 and 100?°C. Although a higher growth rate at 50?°C was observed, nanotubes with better uniformity, conformality, and less residual chloride were obtained at 100?°C because of a different formation mechanism. A photocatalysis test of TiO(2) nanotubes prepared by different cycle numbers at 100?°C was conducted. It showed that TiO(2) nanotubes prepared by 400 cycles of ALD and treated at 700?°C for 1 h to form anatase phase had the best photocatalytic performance. Compared with P-25, the nanotubes showed higher photocatalytic degradation of rhodamine B and water splitting efficiency.  相似文献   

5.
Nanocomposites of titanium dioxide (TiO(2)) and multi-walled carbon nanotubes (MWNTs) were prepared and deposited by sol-gel spin coating on borosilicate substrates and sintered in air at 300?°C for 15?min. Further irradiation of the films with different CO(2) laser intensities (4.3-17?W?m(-2)) was carried out in order to crystallize TiO(2) in the anatase form while preserving the MWNT's structure. The laser irradiation changed the crystal structure of the coatings and also affected the wettability and photocatalytic activity of the films. The anatase phase was only observed when a minimum laser intensity of 12.5?W?m(-2) was used. The contact angle decreased with the enhancement of the laser intensity. The photocatalytic activity of the films was determined from the degradation of a stearic acid layer deposited on the films. It was observed that the addition of carbon nanotubes themselves increases the photocatalytic activity of TiO(2) films. This efficiency is even improved when high CO(2) laser intensities are used during the sintering of the coatings.  相似文献   

6.
磁性纳米TiO2/SiO2/Fe3O4光催化剂的制备及表征   总被引:20,自引:0,他引:20  
以纳米Fe3O4磁粉为核心,采用溶胶一凝胶法制备了TiO2/SiO2/Fe3O4复合光催化剂.用XRD、TEM及元素分析对其结构和表面形貌进行了表征.以具有偶氮染料结构的甲基橙水溶液为目标反应物,评价其光催化活性.结果表明,所制TiO2/SiO2/FeaO4样品为双层包覆型结构,SiO2为中间层,最外层是锐钛矿型的TiO2,该复合光催化剂对甲基橙溶液有较高的光催化活性,并具有可利用其磁性回收重用的特点,应用前景广泛。  相似文献   

7.
Deposition of SiO2 nanofilm on TiO2 particles using atomic layer deposition method is reported. The SiO2 film was prepared at the room temperature using the chemicals Si(OC2H5)4, C2H5N and H2O as precursor, catalyst and reactant gas, respectively. The thickness, composition and uniformity of the SiO2 coating on TiO2 surface were characterized by FESEM, HRTEM, EDS and XPS measurements. In HRTEM analysis, the growth rate was about 0.33 angstroms/cycle. EDS and XPS analysis showed the surface composition of TiO2 nanoparticles was silicon oxide. Zeta potential, particle size distribution and sedimentation test results indicated that dispersibility of coated nanoparticles was higher than that of uncoated nanoparticles because of the electrostatic repulsion between the SiO2-coated layers on the surface of TiO2 nanoparticles. These results suggested that the SiO2 coating could modify the surface characteristics of the TiO2 nanoparticles and improve the dispersibility of the TiO2 primary nanoparticles.  相似文献   

8.
Wei Y  Liu H  Sheng O  Liu Z  Chen S  Yang L 《Applied optics》2011,50(24):4720-4727
Research on thin film deposited by atomic layer deposition (ALD) for laser damage resistance is rare. In this paper, it has been used to deposit TiO(2)/Al(2)O(3) films at 110 °C and 280 °C on fused silica and BK7 substrates. Microstructure of the thin films was investigated by x-ray diffraction. The laser-induced damage threshold (LIDT) of samples was measured by a damage test system. Damage morphology was studied under a Nomarski differential interference contrast microscope and further checked under an atomic force microscope. Multilayers deposited at different temperatures were compared. The results show that the films deposited by ALD had better uniformity and transmission; in this paper, the uniformity is better than 99% over 100 mm Φ samples, and the transmission is more than 99.8% at 1064 nm. Deposition temperature affects the deposition rate and the thin film microstructure and further influences the LIDT of the thin films. As to the TiO(2)/Al(2)O(3) films, the LIDTs were 6.73±0.47 J/cm(2) and 6.5±0.46 J/cm(2) at 110 °C on fused silica and BK7 substrates, respectively. The LIDTs at 11 °C are notably better than 280 °C.  相似文献   

9.
Lin GR  Lin CJ  Lin CT 《Nanotechnology》2007,18(39):395202
Low-plasma and high-temperature chemical vapor deposition of Si-rich SiO(x) for concurrently enhancing the carrier tunneling and light emission efficiency is investigated. The O/Si composition ratio of the SiO(x) film significantly decreases from 2 to 1.2 as the substrate temperature increases from 200 to 400?°C, corresponding to the enhanced precipitation of Si nanocrystals in the Si-rich SiO(x). In comparison with stoichiometric SiO(2), the Si-L(2,3) transition induced kinetic energy loss of the primary electron transmitted through the Si-rich SiO(x) sample grown at 400?°C is red-shifted by 5?eV. The strongest Si nanocrystal related photoluminescence (PL) can be obtained from the Si-rich SiO(x) film prepared at a threshold plasma power of 30?W and substrate temperature of 400?°C. In low-plasma and high-temperature deposited samples, the threshold Fowler-Nordheim (F-N) tunneling field and the indium tin oxide (ITO)-SiO(x) junction potential barrier height of ITO/SiO(x) /p-Si/Al metal-oxide-semiconductor light emitting diodes (MOSLEDs) are concurrently reduced due to the increasing density of Si nanocrystals precipitated within the SiO(x) matrix. A thermal activation energy of 0.8?eV was observed for initiating the F-N tunneling process in the MOSLEDs. The electroluminescence (EL) intensity and efficiency of the MOSLEDs are improved by at least 10?dB due to the oxygen deficient plasma enhanced chemical vapor deposition (PECVD) of Si-rich SiO(x) at low plasma power and high temperatures.  相似文献   

10.
The present study demonstrates a flexible gas-diffusion barrier film, containing an SiO(2)/Al(2)O(3) nanolaminate on a plastic substrate. Highly uniform and conformal coatings can be made by alternating the exposure of a flexible polyethersulfone surface to vapors of SiO(2) and Al(2)O(3), at nanoscale thickness cycles via RF-magnetron sputtering deposition. The calcium degradation test indicates that 24 cycles of a 10/10 nm inorganic bilayer, top-coated by UV-cured resin, greatly enhance the barrier performance, with a permeation rate of 3.79 × 10(-5) g m(-2) day(-1) based on the change in the ohmic behavior of the calcium sensor at 20?°C and 50% relative humidity. Also, the permeation rate for 30 cycles of an 8/8 nm inorganic bilayer coated with UV resin was beyond the limited measurable range of the Ca test at 60?°C and 95% relative humidity. It has been found that such laminate films can effectively suppress the void defects of a single inorganic layer, and are significantly less sensitive against moisture permeation. This nanostructure, fabricated by an RF-sputtering process at room temperature, is verified as being useful for highly water-sensitive organic electronics fabricated on plastic substrates.  相似文献   

11.
Efficient inverted solar cells using TiO(2) nanotube arrays   总被引:2,自引:0,他引:2  
Yu BY  Tsai A  Tsai SP  Wong KT  Yang Y  Chu CW  Shyue JJ 《Nanotechnology》2008,19(25):255202
Using a vertical titania (TiO(2)) nanotube array, an inverted polymer solar cell was constructed with power conversion efficiency up to 2.71%. In this study, self-organized TiO(2) nanotubes arrays were grown by anodizing Ti metal in glycerol electrolyte containing 0.5?wt% NH(4)F and 1.0?wt% H(2)O with 20?V potential. The tube length (~100?nm) was controlled by the thickness of the sputtered titanium layer on the indium-tin oxide (ITO) substrate. The diameter of the tube was approximately 15-25?nm. After annealing in air at 500?°C for 1?h, nanotubes arrays were crystallized to the anatase phase from the initial amorphous state. Following the infiltration of polymeric semiconductor (poly(3-hexylthiophene) and (6,6)-phenyl C(60) butyric acid methyl ester, P3HT:PCBM), the filled TiO(2) layer had an optical absorption over a range from UV to visible light. The high surface-to-volume ratio of the nanotube arrays structure increased the effective area of the active region. The high efficiency of our solar cell is attributed to the vertical TiO(2) nanotube array's enhanced conduction of photo-induced current due to its charge transport capability.  相似文献   

12.
以TiCl4 、Fe (NO3 )3·9H2O 和Na2SiO319H2O 为原料, 采用溶胶凝胶法结合超临界流体干燥法(SCFD)制备了纳米级TiO2/ Fe2O3 和TiO2/ Fe2O3/ SiO2 复合光催化剂。以光催化降解苯酚对所得催化剂的催化活性进行了评价。结果表明, 纳米TiO2/ Fe2O3 复合粒子与单组分TiO2 比较, 复合粒子光催化活性高于单组分的TiO2, 6h 苯酚降解率高达95.9 %。SiO2 的加入可以抑制纳米粒子粒径的长大和晶相的转变, 增强TiO2 纳米粒子的热稳定性。复合光催化剂中Fe2O3 最佳掺入量为0.06 %, SiO2 最佳掺入量为10 %(摩尔分数) 。并用XRD、TEM 和FTIR 等手段进行了表征。TiO2 以锐钛矿型形式存在, SiO2 以无定性形式存在。比较了不同制备方法制得的TiO2/ Fe2O3 复合光催化剂, 得出超临界干燥法制备的光催化剂具有粒径小、比表面积大、分散性好、光催化活性高等特点。采用超临界流体干燥可直接得锐钛型纳米复合光催化剂。  相似文献   

13.
Pung SY  Choy KL  Hou X  Shan C 《Nanotechnology》2008,19(43):435609
Preferred orientation of ZnO thin films deposited by the atomic layer deposition (ALD) technique could be manipulated by deposition temperature. In this work, diethyl zinc (DEZn) and deionized water (H(2)O) were used as a zinc source and oxygen source, respectively. The results demonstrated that (10.0) dominant ZnO thin films were grown in the temperature range of 155-220?°C. The c-axis crystal growth of these films was greatly suppressed. Adhesion of anions (such as fragments of an ethyl group) on the (00.2) polar surface of the ZnO thin film was believed to be responsible for this suppression. In contrast, (00.2) dominant ZnO thin films were obtained between 220 and 300?°C. The preferred orientations of (10.0) and (00.2) of the ZnO thin films were examined by XRD texture analysis. The texture analysis results agreed well with the alignments of ZnO nanowires (NWs) which were grown from these ZnO thin films. In this case, the nanosized crystals of ZnO thin films acted as seeds for the growth of ZnO nanowires (NWs) by chemical vapor deposition (CVD) process. The highly (00.2) textured ZnO thin films deposited at high temperatures, such as 280?°C, contained polycrystals with the c?axis perpendicular to the substrate surface and provided a good template for the growth of vertically aligned ZnO NWs.  相似文献   

14.
Hakim LF  George SM  Weimer AW 《Nanotechnology》2005,16(7):S375-S381
Primary zirconia nanoparticles were conformally coated with alumina ultrathin films using atomic layer deposition (ALD) in a fluidized bed reactor. Alternating doses of trimethylaluminium and water vapour were performed to deposit Al(2)O(3) nanolayers on the surface of 26?nm zirconia nanoparticles. Transmission Fourier transform infrared spectroscopy was performed ex situ. Bulk Al(2)O(3) vibrational modes were observed for coated particles after 50 and 70?cycles. Coated nanoparticles were also examined with transmission electron microscopy, high-resolution field emission scanning electron microscopy and energy dispersive spectroscopy. Analysis revealed highly conformal and uniform alumina nanofilms throughout the surface of zirconia nanoparticles. The particle size distribution and surface area of the nanoparticles are not affected by the coating process. Primary nanoparticles are coated individually despite their high aggregation tendency during fluidization. The dynamic aggregation behaviour of zirconia nanoparticles in the fluidized bed plays a key role in the individual coating of nanoparticles.  相似文献   

15.
Wan N  Lin T  Xu J  Xu L  Chen K 《Nanotechnology》2008,19(9):095709
The sol-gel method was used to prepare SiO(2) thin films co-doped with In(2)O(3) nano-particles and Eu(3+). The formation of nano-sized In(2)O(3) particles after annealing at 900?°C was confirmed by the x-ray diffraction technique. A novel phase transition from a hexagonal rhombic centered to a body centered cubic structure of In(2)O(3) nano-particles was observed at around 1100?°C. It is found that the particle size and the particle density of In(2)O(3) can be tuned by changing the annealing temperature and the indium doping concentration, respectively. The characteristic emission bands from Eu(3+) ions can be observed at room temperature and the luminescence intensity is increased 20 times by introducing In(2)O(3) nano-particles into Eu(3+)-doped silica films. The integrated luminescence intensity was gradually enhanced by increasing the In(3+) concentration, suggesting effective energy transfer from nano-sized In(2)O(3) to Eu(3+) ions.  相似文献   

16.
采用水基原子层沉积(H2O-based ALD)方法在石墨烯上直接生长Al2O3介质薄膜,研究了Al2O3成核机理.原子力显微镜(AFM)对Al2O3薄膜微观形态分析表明,沉积温度决定着Al2O3在石墨烯表面的成核生长情况,物理吸附在石墨烯表面的水分子是Al2O3成核的关键,物理吸附水分子的均匀性直接影响Al2O3薄膜的均匀性.在适当的温度窗口(100~130℃),Al2O3可以均匀沉积在石墨烯上,AFM测得Al2O3薄膜表面均方根粗糙度(RMS)为0.26 nm,X射线光电子能谱(XPS)表面分析与元素深度剖析表明,120℃下在石墨烯表面沉积的Al2O3薄膜中O和Al元素的含量比约为1.5.拉曼光谱分析表明,采用H2O-based ALD工艺沉积栅介质薄膜不会降低石墨烯晶体质量.  相似文献   

17.
We show a comparative study of the TiO2 ALD with TTIP and either O2 or O2-plasma on Si/SiO2 substrates. In particular we compare the surface morphology and crystalline phase by means of Atomic Force Microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS) and X-ray Absorption Spectroscopy (XAS) for different O2-plasma procedures upon changing the time between cycles and the N2-purging pressure. The AFM images show that already these parameters may induce structural changes in the TiO2 films grown by ALD, with the formation of crystallites with average lateral width varying between 15 and 80 nm. By means of XAS we also found that the crystallites have mixed anatase and rutile crystalline phases and that smaller crystallites have a greater rutile component than the larger ones.  相似文献   

18.
The purpose of this study was to investigate the photocatalytic oxidation of a reactive azo dye. The photocatalytic activity of the TiO2 was studied using a reactor equipped with UV-A sources, with maximum emission at 365 nm. The photocatalytic activity of the TiO2 powder (99.9% anatase) and thin films has been measured through the decomposition of methyl orange solutions. The thin film was prepared by doctor blade and spray pyrolysis deposition (SPD). The TiO2 suspensions were prepared at 1 g/L concentration, and the initial methyl orange concentration was fixed at 7.8125 mg/L. The influence of the TiO2 (powder or thin films) and/or O2 and H2O2 on the photobleaching rate, was tested under different experiments, at pH = 5. Thin films (doctor blade) of TiO2 formed of mezo-sized aggregates formed of nanosized anatase crystallites show better photobleaching efficiency than thin film (SPD) due to their large internal surface. The rate is even higher in H2O2 compared to oxygen environment.  相似文献   

19.
Bilayer and multilayer thin films are becoming increasingly important in the development of faster, smaller and more efficient electronic and optoelectronic devices. One of the motivations of applying bilayer or multilayer structures is to modify the optical properties of materials. Atomic layer deposition (ALD) is a variant of Chemical Vapour Deposition that can produce uniform and conformal thin films with well controlled nanostructures. In this study, we have demonstrated new findings of the use of ALD fabricated bilayer TiO2/ZnO thin films with enhanced crystallinity and optical properties. TiO2 films have been deposited at 300 degrees C for 1000 (51 nm in thickness) or 3000 (161 nm in thickness) deposition cycles onto glass and Si substrates. ZnO films are subsequently deposited on the TiO2 layers at 280 degrees C for 500 deposition cycles (55 nm). The crystallinity and optical properties of the TiO2/ZnO thin films have been analysed by X-ray diffraction, photoluminescence, UV-Vis spectroscopy, Atomic Force Microscopy and Scanning Electron Microscopy. XRD diffraction pattern confirmed the presence of ZnO with wutrtize crystal structure and TiO2 with anatase structure. It shows that the crystallinity of the TiO2 films has been improved with the deposition of ZnO. The intensity of UV luminescence has increased by almost 30% for TiO2/ZnO bilayer as compared to the single layer TiO2. The possible mechanism for the enhancement of the optical properties of bilayer TiO2/ZnO thin films will be discussed.  相似文献   

20.
TiO2/SiO2薄膜中的相界扩散及晶化行为研究   总被引:8,自引:2,他引:8  
本文研究了溶胶一凝胶法制备TiO2/SiO2复合薄膜的晶化行为以及复合薄膜与过渡层的相界扩散采用X-ray衍射分析了50TiO2/50SiO2薄膜中TiO2的析晶特征,研究表明,随热处理温度的升高,薄膜的结构由非晶转变为在SiO2玻璃网络中析出的锐钛矿相,再到锐钛矿和金红石二相共存,最后转变为金红石相,并伴随有磷石英和方石英的析出,且其晶粒尺寸也在逐渐增大.AES分析给出了过渡层的气孔率对复合膜中Ti的扩散能力的影响以及复合膜与过渡层之间碳的分布.SEM及EDS进一步揭示了薄膜表面存在亚微米不均匀区域,在此区域中碳的含量较高.在氧气中,提高热处理温度,可以降低碳的含量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号