首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tateno K  Zhang G  Nakano H 《Nano letters》2008,8(11):3645-3650
We investigated the growth of GaInAs/AlInAs heterostructure nanowires on InP(111)B and Si(111) substrates in a metalorganic vapor phase epitaxy reactor. Au colloids were used to deposit Au catalysts 20 and 40 nm in diameter on the substrate surfaces. We obtained vertical GaInAs and AlInAs nanowires on InP(111)B surfaces. The GaInAs nanowires capped with GaAs/AlInAs layers show room-temperature photoluminescence. The peak exhibits a blue-shift when the Ga content in the core GaInAs nanowire is increased. For the GaInAs/AlInAs heterostructure growth, it is possible to change the Ga content sharply but Al also exists in the GaInAs layer regions. We also found that the ratios of Ga and Al contents to In content tend to increase and the axial growth rate to decrease along the nanowire toward the top. We were also able to make vertical GaInAs nanowires on Si(111) surfaces after a short growth of GaP and InP.  相似文献   

2.
Hersee SD  Sun X  Wang X 《Nano letters》2006,6(8):1808-1811
This paper reports a scalable process for the growth of high-quality GaN nanowires and uniform nanowire arrays in which the position and diameter of each nanowire is precisely controlled. The approach is based on conventional metalorganic chemical vapor deposition using regular precursors and requires no additional metal catalyst. The location, orientation, and diameter of each GaN nanowire are controlled using a thin, selective growth mask that is patterned by interferometric lithography. It was found that use of a pulsed MOCVD process allowed the nanowire diameter to remain constant after the nanowires had emerged from the selective growth mask. Vertical GaN nanowire growth rates in excess of 2 mum/h were measured, while remarkably the diameter of each nanowire remained constant over the entire (micrometer) length of the nanowires. The paper reports transmission electron microscopy and photoluminescence data.  相似文献   

3.
For the purpose of functionalizing III‐V semiconductor nanowires using n‐doping, Sn‐doped GaAs zincblende nanowires are produced, using the growth method of Aerotaxy. The growth conditions used are such that Ga droplets, formed on the nanowire surface, increase in number and concentrations when the Sn‐precursor concentration is increased. Droplet‐covered wires grown with varying Sn concentrations are analyzed by transmission electron microscopy and electron tomography, which together establish the positioning of the droplets to be preferentially on {?111}B facets. These facets have the same polarity as the main wire growth direction, [?1?1?1]B. This means that the generated Ga particles can form nucleation sites for possible nanowire branch growth. The concept of azimuthal mapping is introduced as a useful tool for nanowire surface visualization and evaluation. It is demonstrated here that electron tomography is useful in revealing both the surface and internal morphologies of the nanowires, opening up for applications in the analysis of more structurally complicated systems like radially asymmetrical nanowires. The analysis also gives a further understanding of the limits of the dopants which can be used for Aerotaxy nanowires.  相似文献   

4.
Control of GaAs nanowire morphology and crystal structure   总被引:1,自引:0,他引:1  
The morphology and crystal structure of Au-seeded GaAs nanowires (NWs) grown by molecular beam epitaxy were investigated as a function of the temperature, V/III flux ratio, and Ga flux. Low and intermediate growth temperatures of 400 and 500?°C resulted in a strongly tapered morphology, with stacking faults occurring at an average rate of 0.1?nm(-1). NWs with uniform diameter and the occurrence of crystal defects reduced by more than an order of magnitude were achieved at 600?°C, a V/III flux ratio of 2.3, and a Ga impingement rate on the surface of 0.07?nm?s(-1). Comparison of nanowire densities on the various post-growth surfaces suggests a possible incubation time between the moment the Ga shutter is opened and when nanowire growth is initiated. Increasing the flux ratio favored uniform sidewall growth, making the process suitable for the fabrication of core-shell structures.  相似文献   

5.
Gallium arsenide nanowires were synthesized by gallium-assisted molecular beam epitaxy. By varying the growth time, nanowires with diameters ranging from 30 to 160?nm were obtained. Raman spectra of the nanowire ensembles were measured. The small linewidth of the optical phonon modes agree with an excellent crystalline quality. A surface phonon mode was also revealed, as a shoulder at lower frequencies of the longitudinal optical mode. In agreement with the theory, the surface mode shifts to lower wavenumbers when the diameter of the nanowires is decreased or the environment dielectric constant increased.  相似文献   

6.
Long vertically aligned ZnO nanowire arrays were synthesized using an ultra-fast microwave-assisted hydrothermal process. Using this method, we were able to grow ZnO nanowire arrays at an average growth rate as high as 200?nm?min(-1) for maximum microwave power level. This method does not suffer from the growth stoppage problem at long growth times that, according to our investigations, a normal microwave-assisted hydrothermal method suffers from. Longitudinal growth of the nanowire arrays was investigated as a function of microwave power level and growth time using cross-sectional FESEM images of the grown arrays. Effect of seed layer on the alignment of nanowires was also studied. X-ray diffraction analysis confirmed c-axis orientation and single-phase wurtzite structure of the nanowires. J-V curves of the fabricated ZnO nanowire-based mercurochrome-sensitized solar cells indicated that the short-circuit current density is increased with increasing the length of the nanowire array. According to the UV-vis spectra of the dyes detached from the cells, these increments were mainly attributed to the enlarged internal surface area and therefore dye loading enhancement in the lengthened nanowire arrays.  相似文献   

7.
Technical Physics Letters - GaAs nanowires (NWs) were generated on the surface of GaAs(111)B and GaAs(100) substrates from molecular fluxes by the self-catalytic growth method. A mask for NW growth...  相似文献   

8.
ZnO nanowire array films, composed of well aligned ZnO nanowires ~200?nm in diameter and 1?μm in length, were successfully synthesised on Mg doped gallium nitride by hydrothermal method. In addition, the films possess quite flatten surface. In the synthesised process, there was no catalyst that had been used. Growth conditions were comprehensively discussed in the process of aqueous solution method. It was found that the length of ZnO nanowires and the thickness of the film could be tunable by altering solution concentration and growth time. Such ZnO film assembled with vertically aligned nanowire may have potential applications as UV light emitting diodes.  相似文献   

9.
We report the growth of GaAsSb nanowires (NWs) on GaAs(111)B substrates by Au-assisted molecular beam epitaxy. The structural characteristics of the GaAsSb NWs have been investigated in detail. Their Sb mole fraction was found to be about?25%. Their crystal structure was found to be pure zinc blende (ZB), in contrast to the wurtzite structure observed in GaAs NWs grown under similar conditions. The ZB GaAsSb NWs exhibit rotational twins around their [111]B growth axis, with twin-free segments as long as 500?nm. The total volumes of GaAsSb segments with twinned and un-twinned orientations, respectively, were found to be equal by x-ray diffraction analysis of NW ensembles.  相似文献   

10.
Wang DH  Xu D  Wang Q  Hao YJ  Jin GQ  Guo XY  Tu KN 《Nanotechnology》2008,19(21):215602
Twinning has been recognized to be an important microstructural defect in nanoscale materials. Periodically twinned SiC nanowires were largely synthesized by the carbothermal reduction of a carbonaceous silica xerogel prepared from tetraethoxysilane and biphenyl with iron nitrate as an additive. The twinned β-SiC nanowires, with a hexagonal cross section, a diameter of 50-300?nm and a length of tens to hundreds of micrometers, feature a zigzag arrangement of periodically twinned segments with a rather uniform thickness along the entire growth length. Computer simulation has been used to generate three-dimensional atomic structures of the zigzag columnar twin structure by the stacking of hexagonal discs of {111} planes of SiC. A minimum surface energy and strain energy argument is proposed to explain the formation of periodic twins in the SiC nanowires. The thickness of the periodic twinned segments is found to be linearly proportional to the nanowire diameter, and a constant volume model is proposed to explain the relation.  相似文献   

11.
Molecular beam epitaxial growth of GaAs nanowires using Au particles as a catalyst was investigated. Prior to the growth during annealing, Au alloyed with Ga coming from the GaAs substrate, and melted. Phase transitions of the resulting particles were observed in?situ by reflection high-energy electron diffraction (RHEED). The temperature domain in which GaAs nanowire growth is possible was determined. The lower limit of this domain (320?°C) is close to the observed catalyst solidification temperature. Below this temperature, the catalyst is buried by GaAs growth. Above the higher limit (620?°C), the catalyst segregates on the surface with no significant nanowire formation. Inside this domain, the influence of growth temperature on the nanowire morphology and crystalline structure was investigated in detail by scanning electron microscopy and transmission electron microscopy. The correlation of the nanowire morphology with the RHEED patterns observed during the growth was established. Wurtzite GaAs was found to be the dominant crystal structure of the wires.  相似文献   

12.
We have synthesized ternary InGaAs nanowires on (111)B GaAs surfaces by metal-organic chemical vapor deposition. Au colloidal nanoparticles were employed to catalyze nanowire growth. We observed the strong influence of nanowire density on nanowire height, tapering, and base shape specific to the nanowires with high In composition. This dependency was attributed to the large difference of diffusion length on (111)B surfaces between In and Ga reaction species, with In being the more mobile species. Energy dispersive X-ray spectroscopy analysis together with high-resolution electron microscopy study of individual InGaAs nanowires shows large In/Ga compositional variation along the nanowire supporting the present diffusion model. Photoluminescence spectra exhibit a red shift with decreasing nanowire density due to the higher degree of In incorporation in more sparsely distributed InGaAs nanowires.  相似文献   

13.
By utilizing the reduced contact area of nanowires, we show that epitaxial growth of a broad range of semiconductors on graphene can in principle be achieved. A generic atomic model is presented which describes the epitaxial growth configurations applicable to all conventional semiconductor materials. The model is experimentally verified by demonstrating the growth of vertically aligned GaAs nanowires on graphite and few-layer graphene by the self-catalyzed vapor-liquid-solid technique using molecular beam epitaxy. A two-temperature growth strategy was used to increase the nanowire density. Due to the self-catalyzed growth technique used, the nanowires were found to have a regular hexagonal cross-sectional shape, and are uniform in length and diameter. Electron microscopy studies reveal an epitaxial relationship of the grown nanowires with the underlying graphitic substrates. Two relative orientations of the nanowire side-facets were observed, which is well explained by the proposed atomic model. A prototype of a single GaAs nanowire photodetector demonstrates a high-quality material. With GaAs being a model system, as well as a very useful material for various optoelectronic applications, we anticipate this particular GaAs nanowire/graphene hybrid to be promising for flexible and low-cost solar cells.  相似文献   

14.
Lee EK  Choi BL  Park YD  Kuk Y  Kwon SY  Kim HJ 《Nanotechnology》2008,19(18):185701
High quality, single-crystal silicon nanowires were successfully grown from silicon wafers with a nickel catalyst by utilizing a solid-liquid-solid (SLS) mechanism. The nanowires were composed of a crystalline silicon core with an average diameter of 10?nm and a thick outer oxide layer of between 20 and 30?nm at a growth temperature of 1000?°C. When utilizing the SLS growth mechanism, the diameter of the silicon nanowire is dependent solely upon the growth temperature, and has no relation to either the size or the shape of the catalyst. The characteristics of the silicon nanowires are highly dependent upon the properties of the silicon substrate, such as the crystal phase of silicon itself, as well as the doping type. The possibility of doping of silicon nanowires grown via the SLS mechanism without any external dopant source was demonstrated by measuring the electrical properties of a silicon nanowire field effect transistor.  相似文献   

15.
Mechanical elasticity of hexagonal wurtzite GaN nanowires with hexagonal cross sections grown through a vapour-liquid-solid (VLS) method was investigated using a three-point bending method with a digital-pulsed force mode (DPFM) atomic force microscope (AFM). In a diameter range of 57-135?nm, bending deflection and effective stiffness, or spring constant, profiles were recorded over the entire length of end-supported GaN nanowires and compared to the classic elastic beam models. Profiles reveal that the bending behaviour of the smallest nanowire (57.0?nm in diameter) is as a fixed beam, while larger nanowires (89.3-135.0?nm in diameter) all show simple-beam boundary conditions. Diameter dependence on the stiffness and elastic modulus are observed for these GaN nanowires. The GaN nanowire of 57.0?nm diameter displays the lowest stiffness (0.98?N?m(-1)) and the highest elastic modulus (400 ± 15?GPa). But with increasing diameter, elastic modulus decreases, while stiffness increases. Elastic moduli for most tested nanowires range from 218 to 317?GPa, which approaches or meets the literature values for bulk single crystal and GaN nanowires with triangular cross sections from other investigators. The present results together with further tests on plastic and fracture processes will provide fundamental information for the development of GaN nanowire devices.  相似文献   

16.
In this report we explore the structural and optical properties of GaAs/A1GaAs heterostructure nanowires grown by metalorganic vapour phase epitaxy using gold seed-particles. The optical studies were done by low-temperature cathodo- luminescence (CL) in a scanning electron microscope (SEM). We perform a systematic investigation of how the nanowire growth-temperature affects the total photon emission, and variations in the emission energy and intensity along the length of the nanowires. The morphology and crystal structures of the nanowires were investigated using SEM and transmission electron microscopy (TEM). In order to correlate specific photon emission characteristics with variations in the nanowire crystal structure directly, TEM and spatially resolved CL measurements were performed on the same individual nanowires. We found that the main emission energy was located at around 1.48 eV, and that the emission intensity was greatly enhanced when increasing the GaAs nanowire core growth temperature. The data strongly suggests that this emission energy is related to rotational twins in the GaAs nanowire core. Our measurements also show that radial overgrowth by GaAs on the GaAs nanowire core can have a deteriorating effect on the optical quality of the nanowires. Finally, we conclude that an in situ pre-growth annealing step at a sufficiently high temperature significantly improves the optical quality of the nanowires.  相似文献   

17.
High quality GaAs nanowires grown on glass substrates   总被引:1,自引:0,他引:1  
We report for the first time the growth of GaAs nanowires directly on low-cost glass substrates using atmospheric pressure metal organic vapor phase epitaxy via a vapor-liquid-solid mechanism with gold as catalyst. Substrates used in this work were of float glass type typically seen in household window glasses. Growth of GaAs nanowires on glass were investigated for growth temperatures between 410 and 580 °C. Perfectly cylindrical nontapered nanowires with a growth rate of ~33 nm/s were observed at growth temperatures of 450 and 470 °C, whereas highly tapered pillar-like wires were observed at 580 °C. Nanowires grew horizontally on the glass surface at 410 °C with a tendency to grow in vertically from the substrate as the growth temperature was increased. X-ray diffraction and transmission electron microscopy revealed that the nanowires have a perfect zinc blende structure with no planar structural defects or stacking faults. Strong photoluminescence emission was observed both at low temperature and room temperature indicating a high optical quality of GaAs nanowires. Growth comparison on impurity free fused silica substrate suggests unintentional doping of the nanowires from the glass substrate.  相似文献   

18.
Liu Z  Zhang H  Wang L  Yang D 《Nanotechnology》2008,19(37):375602
Nickel silicide nanowire arrays have been achieved by the decomposition of SiH(4) on Ni foil at 650?°C. It is indicated that the nickel silicide nanowires consist of roots with diameter of about 100-200?nm and tips with diameter of about 10-50?nm. A Ni diffusion controlled mechanism is proposed to explain the formation of the nickel silicide nanowires. Field emission measurement shows that the turn-on field of the nickel silicide nanowire arrays is low, at about 3.7?V?μm(-1), and the field enhancement factor is as high as 4280, so the arrays have promising applications as?emitters.  相似文献   

19.
We report on the new mode of the vapor-liquid-solid nanowire growth with a droplet wetting the sidewalls and surrounding the nanowire rather than resting on its top. It is shown theoretically that such an unusual configuration happens when the growth is catalyzed by a lower surface energy metal. A model of a nonspherical elongated droplet shape in the wetting case is developed. Theoretical predictions are compared to the experimental data on the Ga-catalyzed growth of GaAs nanowires by molecular beam epitaxy. In particular, it is demonstrated that the experimentally observed droplet shape is indeed nonspherical. The new VLS mode has a major impact on the crystal structure of GaAs nanowires, helping to avoid the uncontrolled zinc blende-wurtzite polytylism under optimized growth conditions. Since the triple phase line nucleation is suppressed on surface energetic grounds, all nanowires acquire pure zinc blende phase along the entire length, as demonstrated by the structural studies of our GaAs nanowires.  相似文献   

20.
Cathodoluminescence at 8?K is used to compare the optical properties of AlGaAs-capped GaAs nanowires, grown by metal-organic vapour phase epitaxy and seeded by gold particles prepared by different methods. Six different methods were used to fabricate and deposit gold seed particles onto GaAs substrates: colloid particles, aerosol particles and particles defined by electron beam lithography. The nanowires were grown with and without an in?situ annealing step prior to the nanowire growth. The morphology showed no significant differences between the nanowires. The emissions from ensembles of nanowires have the same peak position, irrespective of seed particle type. Without the in?situ annealing step prior to the nanowire growth, there are significant differences in the emission intensity and emission patterns from nanowires grown from different seed particles. When an in?situ annealing step is included, all the resulting nanowires show identical optical emission intensity and emission patterns. This shows the importance of using an in?situ annealing step prior to growth. This study demonstrates that different preparation methods for gold seed particles can be used to produce GaAs nanowires with highly similar optical properties. The choice of particle preparation method to be used can therefore be based on availability and cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号