首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A material consisting of multi-walled carbon nanotubes (MWCNTs) and larger titania (TiO(2)) nanotube arrays has been produced and found to be efficient for reversible hydrogen (H(2)) storage. The TiO(2) nanotube arrays (diameter ~60?nm and length ~2-3?μm) are grown on a Ti substrate, and?MWCNTs a few μm in length and ~30-60?nm in diameter are grown inside these TiO(2) nanotubes using chemical vapor deposition with cobalt as a catalyst. The resulting material has been used in H(2) storage experiments based on a volumetric method using the pressure, composition, and temperature relationship of the storage media. This material can store up to 2.5?wt% of H(2) at 77?K under 25?bar with more than 90% reversibility.  相似文献   

2.
We have employed a simple process of anodizing Ti foils to prepare TiO2 nanotube arrays which show enhanced electrochemical properties for applications as Li-ion battery electrode materials. The lengths and pore diameters of TiO2 nanotubes can be finely tuned by varying voltage, electrolyte composition, or anodization time. The as-prepared nanotubes are amorphous and can be converted into anatase nanotubes with heat treatment at 480 degrees C. Rutile crystallites emerge in the anatase nanotube when the annealing temperature is increased to 580 degrees C, resulting in TiO2 nanotubes of mixed phases. The morphological features of nanotubes remain unchanged after annealing. Li-ion insertion performance has been studied for amorphous and crystalline TiO2 nanotube arrays. Amorphous nanotubes with a length of 3.0 microm and an outer diameter of 125 nm deliver a capacity of 91.2 microA h cm(-2) at a current density of 400 microA cm(-2), while those with a length of 25 microm and an outer diameter of 158 nm display a capacity of 533 microA h cm-2. When the 3-microm long nanotubes become crystalline, they deliver lower capacities: the anatase nanotubes and nanotubes of mixed phases show capacities of 53.8 microA h cm-2 and 63.1 microA h cm(-2), respectively at the same current density. The amorphous nanotubes show excellent capacity retention ability over 50 cycles. The cycled nanotubes show little change in morphology compared to the nanotubes before electrochemical cycling. All the TiO2 nanotubes demonstrate higher capacities than amorphous TiO2 compact layer reported in literature. The amorphous TiO2 nanotubes with a length of 1.9 microm exhibit a capacity five times higher than that of TiO2 compact layer even when the nanotube array is cycled at a current density 80 times higher than that for the compact layer. These results suggest that anodic TiO2 nanotube arrays are promising electrode materials for rechargeable Li-ion batteries.  相似文献   

3.
Uniform and highly ordered TiO2 nanotube arrays were fabricated by the electrochemical anodic oxidation on Ti-6Al-4V surface, using graphite plate as cathode and ethylene glycol (EG) with addition of a certain amount of H2O and NH4F as electrolyte, and the anodization voltage went up to a presetting voltage by stepwise increment. The morphology, structure and composition of TiO2 nanotube arrays were characterized by SEM, EDS, XRD and XPS. The formation process of TiO2 nanotubes was introduced in brief. The experiments were arranged by an orthogonal experiment method and the experimental results showed that the formation of TiO2 nanotube arrays was influenced by not only each factor (F- content, H2O content, external voltage and duration), but also cross correlation among the four factors. The optimal condition was F- content 0.2 wt%, H2O content 4 vol%, external voltage 40 V and duration 1 h in the studied electrochemical system, and the length of obtained nanotubes was 1.5 microm, the outer diameter was approximately 100 nm and the aspect ratio was 15. As-formed nanotube arrays were amorphous and changed to anatase TiO2 after annealed at 500 degrees C for 2 h in air ambience. XPS survey spectra revealed the surface of as-formed nanotube arrays containing Ti, O, C, F and N. The nanotube arrays on Ti-6Al-4V surface with better thermo-stability and crystallinity would have great potential in biomaterials.  相似文献   

4.
The main objective of this study is to show the effect of TiO2 nanotube length, diameter and intertubular lateral spacings on the performance of back illuminated dye sensitized solar cells (DSSCs). The present study shows that processing short TiO2 nanotubes with good lateral spacings could significantly improve the performance of back illuminated DSSCs. Vertically aligned, uniform sized diameter TiO2 nanotube arrays of different tube lengths have been fabricated on Ti plates by a controlled anodization technique at different times of 24, 36, 48 and 72?h using ethylene glycol and ammonium fluoride as an electrolyte medium. Scanning electron microscopy (SEM) showed formation of nanotube arrays spread uniformly over a large area. X-ray diffraction (XRD) of TiO2 nanotube layer revealed the presence of crystalline anatase phases. By employing the TiO2 nanotube array anodized at 24?h showing a diameter ??80?nm and length ??1·5???m as the photo-anode for back illuminated DSSCs, a full-sun conversion efficiency (??) of 3·5 % was achieved, the highest value reported for this length of nanotubes.  相似文献   

5.
Well aligned TiO2 nanotubes were successfully synthesized by anodization of Ti foil at 60 V in a fluorinated bath comprised of ethylene glycol with 5 wt% of NH4F and 5 wt% of H2O2. In order to enhance the visible light absorption and photoelectrochemical response of pure TiO2 nanotube arrays, a mixed oxide system (W-TiO2) was investigated. W-TiO2 nanotube arrays were prepared using radio-frequency (RF) sputtering to incorporate the W into the lattice of TiO2 nanotube arrays. The W atoms occupy the substitutional position within the vacancies of TiO2 nanotube arrays. The as-anodized TiO2 is amorphous in nature while the annealed TiO2 is anatase phase. The mixed oxide (W-TiO2) system in suitable TiO2 phase plays important roles in efficient electron transfers due to the reduction in electron-hole recombination. In this article, the effect of the sputtered W into the as-anodized/annealed TiO2 nanotube arrays on the photoelectrochemical response was presented.  相似文献   

6.
采用电化学沉积的方法,以阳极氧化法制备的二氧化钛纳米管阵列为基底,制备出高度有序的TiO_2-聚吡咯(PPy)纳米阵列,再通过共热法,将单质硫颗粒负载到基底阵列中,得到S/PPy/TiO_2纳米阵列结构复合材料。扫描电镜(SEM)、透射电镜(TEM)、能谱(EDX)、傅里叶变换红外光谱(FT-IR)和热重分析(TGA)表征结果表明,TiO_2纳米管高度有序平行排列,管径约120nm,聚吡咯均匀沉积在纳米管壁上,复合材料中硫的质量分数约为61.9%。电化学测试结果表明,在0.1C电流密度下,S/PPy/TiO_2纳米复合材料首次循环比容量达1155mAh·g-1,100次循环后比容量为648.4mAh·g-1,库伦效率保持在96.8%。高容量下良好的循环稳定性能显示出S/TiO_2/PPy纳米阵列结构复合材料作为锂硫电池正极材料的优势。  相似文献   

7.
Ye M  Xin X  Lin C  Lin Z 《Nano letters》2011,11(8):3214-3220
Dye-sensitized solar cells (DSSCs) based on hierarchically structured TiO(2) nanotubes prepared by a facile combination of two-step electrochemical anodization with a hydrothermal process exhibited remarkable performance. Vertically oriented, smooth TiO(2) nanotube arrays fabricated by a two-step anodic oxidation were subjected to hydrothermal treatment, thereby creating advantageous roughness on the TiO(2) nanotube surface (i.e., forming hierarchically structured nanotube arrays-nanoscopic tubes composed of a large number of nanoparticles on the surface) that led to an increased dye loading. Subsequently, these nanotubes were exploited to produce DSSCs in a backside illumination mode, yielding a significantly high power conversion efficiency, of 7.12%, which was further increased to 7.75% upon exposure to O(2) plasma.  相似文献   

8.
Guan XF  Huang SQ  Zhang QX  Shen X  Sun HC  Li DM  Luo YH  Yu RC  Meng QB 《Nanotechnology》2011,22(46):465402
We fabricated a front-side illuminated CdS/CdSe quantum dots co-sensitized solar cell based on TiO(2) nanotube arrays. The freestanding TiO(2) nanotube arrays were first detached from anodic oxidized Ti foils and then transferred to the fluorine-doped tin oxide to form photoanodes. An opaque Cu(2)S with high electrochemical activity was used as the counter electrode. A photovoltaic conversion efficiency as high as 3.01% under one sun illumination has been achieved after optimizing the deposition time of CdSe quantum dots and the length of the TiO(2) nanotube arrays. It is observed that the power conversion efficiency of quantum dots sensitized solar cells from the front-side illumination mode (3.01%) is much higher than that of the back-side illumination mode (1.32%) owing to the poor catalytic activity of Pt to polysulfide electrolytes and light absorption by the electrolytes for the latter.  相似文献   

9.
Park JH  Kim S  Bard AJ 《Nano letters》2006,6(1):24-28
The photocatalytic splitting of water into hydrogen and oxygen using solar light is a potentially clean and renewable source for hydrogen fuel.(1,2) There has been extensive investigation into metal-oxide semiconductors such as TiO(2), WO(3), and Fe(2)O(3), which can be used as photoanodes in thin-film form.(3-5) Of the materials being developed for photoanodes, TiO(2) remains one of the most promising because of its low cost, chemical inertness, and photostability.(6) However, the widespread technological use of TiO(2) is hindered by its low utilization of solar energy in the visible region. In this study, we report the preparation of vertically grown carbon-doped TiO(2) (TiO(2-x)C(x)) nanotube arrays with high aspect ratios for maximizing the photocleavage of water under white-light irradiation. The synthesized TiO(2-x)C(x) nanotube arrays showed much higher photocurrent densities and more efficient water splitting under visible-light illumination (> 420 nm) than pure TiO(2) nanotube arrays. The total photocurrent was more than 20 times higher than that with a P-25 nanoparticulate film under white-light illumination.  相似文献   

10.
Highly ordered TiO2 nanotube arrays are superior photoanodes for dye-sensitized solar cells (DSSCs) due to reduced intertube connections, vectorial electron transport, suppressed electron recombination, and enhanced light scattering. Performance of the cells is greatly affected by tube geometry, such as wall thickness, length, inner diameter and intertube spacing. In this paper, effect of geometry on the photovoltaic characteristics of DSSCs is reviewed. The nanotube wall has to be thick enough for a space charge layer to form for faster electron transportation and reduced recombination. When the tube wall is too thin to support the space charge layer, electron transport in the nanotubes will be hindered and reduced to that similar in a typical nanoparticle photoanode, and recombination will easily take place. Length of the nanotubes also plays a role: longer tube length is desired because of more dye loading, however, tube length longer than the electron diffusion length results in low collecting efficiency, which in turn, results in low short-circuit current density and thus low overall conversion efficiency. The tube inner diameter (pore size) affects the conversion efficiency through effective surface area, i.e., larger pore size gives rise to smaller surface area for dye adsorption, which results in low short-circuit current density under the same light soaking. Another issue that may seriously affect the conversion efficiency is whether each of the tube stands alone (free from connecting to the neighboring tubes) to facilitate infiltration of dye and fully use the outer surface area.  相似文献   

11.
The effect of electrolyte pH and annealing temperature on the formation of TiO2 nanotube arrays in connection with the photoelectrochemical response was investigated in this article. Well-aligned TiO2 nanotube arrays were fabricated by anodisation of Ti foil in an electrolyte consisting of 1?M of glycerol (85?wt% of glycerol and 15?wt% of water) with 0.5?wt% of NH4F at 30?V for 30?min. The pH of the electrolyte was varied from pH 1 to 7. With the increase of electrolyte pH to neutral condition, the length of the nanotube arrays was increased from ~320 to 1100?nm. As-anodised TiO2 nanotube arrays were amorphous in nature. However, anatase phase was observed after annealing at 400°C and polycrystalline anatase and rutile phase could be observed by heating up to 500°C in air atmosphere. Based on the results obtained, the length and crystalline phases of TiO2 nanotube arrays affect the performance of photoelectrochemical response and photoconversion efficiency significantly.  相似文献   

12.
Donor antenna dyes provide an exciting route to improving the efficiency of dye sensitized solar cells owing to their high molar extinction coefficients and the effective spatial separation of charges in the charge-separated state, which decelerates the recombination of photogenerated charges. Vertically oriented TiO(2) nanotube arrays provide an optimal material architecture for photoelectrochemical devices because of their large internal surface area, lower recombination losses, and vectorial charge transport along the nanotube axis. In this study, the results obtained by sensitizing TiO(2) nanotube arrays with the donor antenna dye Ru-TPA-NCS are presented. Solar cells fabricated using an antenna dye-sensitized array of 14.4 microm long TiO(2) nanotubes on Ti foil subjected to AM 1.5 one sun illumination in the backside geometry exhibited an overall conversion efficiency of 6.1%. An efficiency of 4.1% was obtained in the frontside illumination geometry using a 1 microm long array of transparent TiO(2) nanotubes subjected to a TiCl(4) treatment and then sensitized with the Ru-TPA-NCS dye. Open circuit voltage decay measurements give insight into the recombination behavior in antenna-dye sensitized nanotube photoelectrodes, demonstrating outstanding properties likely due to a reduction in the influence of the surface traps and reduced electron transfer from TiO(2) to ions in solution.  相似文献   

13.
Ordered, closely packed, and vertically oriented titania nanotube arrays with lengths exceeding 10?μm were fabricated by anodization of titanium foils. The effects of anodization voltage and time on the microstructural morphology and the photovoltaic performance of dye sensitized solar cells based on the titania nanotube arrays were investigated. On increasing the anodization voltage or time, the increase in active surface area leads to enhanced photovoltaic currents and thereby an overall higher performance of the dye sensitized solar cells. The efficiency enhancement with rising anodization voltage exceeds the increase in the outer surface area of the nanotubes, indicating that the active surface area is further enlarged by a more accessible inner surface of the nanotube arrays grown with a higher anodization voltage. A promising efficiency of 3.67% for dye sensitized solar cells based on anodized titania nanotube arrays was achieved under AM1.5, 100?mW?cm(-2) illumination.  相似文献   

14.
Qiu J  Yu W  Gao X  Li X 《Nanotechnology》2006,17(18):4695-4698
A TiO(2) nanotube array with a large surface area is fabricated on a glass substrate using a ZnO nanorod array and sol-gel process, and the structural characteristics of the TiO(2) nanotube array are investigated. The well-aligned ZnO nanorod array, which is deposited on ZnO seed layer coated glass substrates by the wet-chemical route, is used as a template to synthesize TiO(2)/ZnO composite nanostructures through the sol-gel process. Then, by selectively removing the ZnO template, a TiO(2) nanotube with contours of the ZnO nanorods is fabricated on the ZnO seed layer coated glass. The resultant TiO(2) nanotubes are 1.5?μm long and 100-120?nm in inner diameter, with a wall thickness of ~10?nm. In addition, by adjusting the experimental parameters, such as the dip-coating cycle number or heating rate, porous TiO(2) thick films can also be obtained.  相似文献   

15.
In the present work, tuning effects of dimethyl sulphoxide (DMSO) on the length, wall thickness, dimension and morphology of titania nanotube arrays fabricated by anodization was investigated. DMSO presented in both ethylene glycol and glycerol electrolytes provided excellent tunability in length, wall thickness and diameter of the produced TiO2 nanotube arrays by systematically varying the DMSO concentration. At the DMSO concentration of 12 wt% in ethylene glycol, the nanotube length could be up to 13.0 microm at 20 V for 8 h anodization. The TiO2 nanotube arrays produced in DMSO containing ethylene glycol or glycerol electrolytes displayed a high sensitivity to hydrogen at room temperature compared to the absence of DMSO. The further enhancement of resistance response could be achieved by coating a Pt and Pd layer on the surface of TiO2 nanotube-arrays. The presented work provided a simple way to control formation of TiO2 nanotube arrays through the tuning effects of DMSO in ethylene glycol or glycerol electrolytes.  相似文献   

16.
Koh JH  Koh JK  Seo JA  Shin JS  Kim JH 《Nanotechnology》2011,22(36):365401
Porous TiO(2) nanotube arrays with three-dimensional (3D) interconnectivity were prepared using a sol-gel process assisted by poly(vinyl chloride-graft-4-vinyl pyridine), PVC-g-P4VP graft copolymer and a ZnO nanorod template. A 7 μm long ZnO nanorod array was grown from the fluorine-doped tin oxide (FTO) glass via a liquid phase deposition method. The TiO(2) sol-gel solution templated by the PVC-g-P4VP graft copolymer produced a random 3D interconnection between the adjacent ZnO nanorods during spin coating. Upon etching of ZnO, TiO(2) nanotubes consisting of 10-15 nm nanoparticles were generated, as confirmed by wide-angle x-ray scattering (WAXS), energy-filtering transmission electron microscopy (EF-TEM) and field-emission scanning electron microscopy (FE-SEM). The ordered and interconnected nanotube architecture showed an enhanced light scattering effect and increased penetration of polymer electrolytes in dye-sensitized solar cells (DSSC). The energy conversion efficiency reached 1.82% for liquid electrolyte, and 1.46% for low molecular weight (M(w)) and 0.74% for high M(w) polymer electrolytes.  相似文献   

17.
The fabrication and structure characterization of ordered nanowire-nanotube hybrid arrays embedded in porous anodic aluminum oxide (AAO) membranes are reported. Arrays of TiO(2) nanotubes were first deposited into the pores of AAO membranes by a sol-gel technique. Co?nanowires were then electrochemically deposited into the TiO(2) nanotubes to form the nanowire-nanotube hybrid arrays. Scanning electron microscopy and transmission electron microscopy measurements showed a high nanowire filling factor and a clean interface between the Co nanowire and the TiO(2) nanotube. Application of these hybrids to the fabrication of ordered nanowire arrays with highly controllable geometric parameters is discussed.  相似文献   

18.
Dye-sensitized solar cells (DSSCs) were prepared using TiO(2) nanotubes, grown by controlled Ti anodic oxidation in non-aqueous media. Smooth, vertically oriented TiO(2) nanotube arrays, presenting a high degree of self-organization and a length of 20 μm, have been grown using ethylene glycol electrolyte containing HF. As-grown nanotubes exhibit an amorphous structure, which transforms to the anatase TiO(2) crystalline phase upon post-annealing in air at 450?°C. Atomic force microscopy (AFM) revealed the porous morphology together with high roughness and fractality of the surface. The annealed tubes were sensitized by the standard N719 ruthenium dye and the adsorption was characterized using resonance micro-Raman spectroscopy and adsorption-desorption measurements. The sensitized tubes were further used as active photoelectrodes after incorporation in sandwich-type DSSCs using both liquid and solidified electrolytes. The efficiencies obtained under air mass (AM) 1.5 conditions, using a back-side illumination geometry, were very promising: 0.85% using a composite polymer redox electrolyte, while the efficiency was further increased up to 1.65% using a liquid electrolyte.  相似文献   

19.
Nanosize and vitality: TiO2 nanotube diameter directs cell fate   总被引:1,自引:0,他引:1  
We generated, on titanium surfaces, self-assembled layers of vertically oriented TiO2 nanotubes with defined diameters between 15 and 100 nm and show that adhesion, spreading, growth, and differentiation of mesenchymal stem cells are critically dependent on the tube diameter. A spacing less than 30 nm with a maximum at 15 nm provided an effective length scale for accelerated integrin clustering/focal contact formation and strongly enhances cellular activities compared to smooth TiO2 surfaces. Cell adhesion and spreading were severely impaired on nanotube layers with a tube diameter larger than 50 nm, resulting in dramatically reduced cellular activity and a high extent of programmed cell death. Thus, on a TiO2 nanotube surface, a lateral spacing geometry with openings of 30-50 nm represents a critical borderline for cell fate.  相似文献   

20.
This study fabricates dye-sensitized solar cells (DSSCs) based on TiO(2)/multi-walled carbon nanotube (MWCNT) nanocomposite photoanodes obtained by the modified acid-catalyzed sol-gel procedure. Results show that incorporating MWCNTs into a TiO(2)-based electrode efficiently improves the physicochemical properties of the solar cell. The results of dye adsorption and cell performance measurements indicate that introducing MWCNTs would improve the roughness factor (from?834 to?1267) of the electrode and the charge recombination of electron/hole (e(-)/h(+)) pairs. These significant changes could lead to higher adsorbed dye quantities, photocurrent and DSSC cell performance. Nevertheless, a higher loading of MWCNTs causes light-harvesting competition that affects the light adsorption of the dye-sensitizer, and consequently reduces the cell efficiency. This study suggests an optimum MWCNT loading in the electrode of 0.3?wt%, and proposes a sol-gel synthesis procedure as a promising method of preparing the TiO(2)-based nanocomposite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号