首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用化学氧化法制备了水溶性聚苯胺(PANI),用溶胶-凝胶法制备了 SmBaCu1-yMnyO5+δ(y=0, 0.1, 0.2, 0.3,0.4, 0.5, 0.6)(SBCM)粉体,用微粒填充法制备了 PANI / SBCM 复合材料。利用 FT-IR、XRD、TEM 多种手段对产物进行表征,并制成气敏元件,在室温操作温度下测试其对氨气的灵敏度。结果表明,在相同条件下,在 PANI元件、SBCM 元件及 PANI / SBCM 元件气敏测试中,PANI/SmBaCu0.7Mn0.3O5+δ(PANI/SBC70M30) 元件对氨气的气敏性能最优,对体积分数为 100×10–6的 NH3灵敏度在室温条件下达到最大值为 4.66,同时还具有较好的选择性、响应-恢复特性与稳定性,响应时间和恢复时间分别为 16 和 121 s。  相似文献   

2.
利用化学氧化法制备的聚苯胺(PANI)和溶胶-凝胶法制备的BaCe0.9Gd0.1O3-δ(BCG)粉体,采用直接分散法制备了PANI/BCG复合材料。通过XRD、FTIR和TEM对所制产物进行了表征,并且利用气敏元件测试系统研究了PANI/BCG复合材料的氨敏性能。结果发现,BCG粒子在PANI中分散性良好,PANI/BCG复合材料在室温下对氨气表现出良好的气敏性,对体积分数100×10–6的氨气的灵敏度达到20,并且选择性好,性能稳定,适于在较宽的浓度范围内对氨气进行检测。  相似文献   

3.
用化学共沉淀和热处理法于pH11.5~12.5时,用(NH4)2CO3作沉淀剂,制备了Zn2+掺杂的In2O3微粉。研究了Zn2+掺杂量对In2O3气敏元件电导和气敏性能的影响。结果发现,ZnO与In2O3可形成有限固溶体In2-xZnxO3(0≤x≤0.10);In1.95Zn0.05O3气敏元件在223℃工作温度下,对浓度为4.5×10–7mol/L的C2H5OH的灵敏度高达174.4,且选择性也好。  相似文献   

4.
聚噻吩/WO_3复合纳米材料的制备及气敏性能   总被引:1,自引:1,他引:0  
采用水合肼法制备WO3粉体,再以无水FeCl3作氧化剂,通过原位化学氧化聚合制备了不同聚噻吩(PTh)掺杂量的PTh/WO3复合纳米材料。并研究了用其制备的气敏元件的气敏性能。结果表明:气敏元件对H2S和NOx有较高的灵敏度和较好的选择性。用质量分数w(PTh)为5%的PTh/WO3复合纳米材料制备的气敏元件,在加热电压为2.25V时,对体积分数φ(NOx)为5×10–6的灵敏度可达77.14;用w(PTh)为20%的PTh/WO3复合纳米材料所制之气敏元件,在加热电压为2.43V时,对φ(H2S)为20×10–6的灵敏度达63.27。  相似文献   

5.
采用聚二甲基二烯丙基氯化铵(PDDAC)作为敏感膜材料,以聚酰亚胺(PI)薄膜为柔性衬底制备了气敏元件,利用能谱分析(EDX)和原子力显微镜(AFM)对PDDAC敏感膜的组成和形貌进行了表征,通过检测元件电阻随氨气浓度的变化对元件的氨敏性能进行了研究。结果表明:室温下,该元件对体积分数为200×10–6的氨气的响应灵敏度为82%,且具有较好的响应-恢复特性,响应时间和恢复时间分别为68 s和63 s。  相似文献   

6.
采用两步法制备氧化锌纳米片/聚苯胺(ZnO/PANI)复合材料,首先制备ZnO纳米片,然后以此为载体,通过苯胺单体的原位聚合得到最终产物。通过XRD、FTIR、FESEM、氮气吸附-脱附和紫外-可见漫反射对合成材料进行表征,研究了其紫外激发室温气敏性能,分析了可能的紫外激发气敏机理。结果表明,在紫外光激发下,ZnO/PANI复合材料实现了室温检测,乙醇浓度100×10~(-6)(体积分数)时,灵敏度较高达到17.6,响应和恢复时间均在30 s以内。  相似文献   

7.
气敏元件室温光激发气敏性能研究   总被引:1,自引:0,他引:1  
研究了WO3掺杂的ZnO基气敏元件在紫外(UV)光激发下,对乙醇气体的室温气敏性能。结果表明:在UV光照射下,各元件在室温下对体积分数为100×10–6的乙醇气体显示了很好的光敏、气敏性能,响应、恢复时间均在8s以内,其中以掺杂X(WO3)为1%的元件W(1)为最佳,从而实现了室温下的气敏测试。  相似文献   

8.
钇掺杂纳米α-Fe2O3的合成及气敏性能研究   总被引:3,自引:0,他引:3  
采用柠檬酸sol-gel法制备了不同掺杂量的Y2O3-Fe2O3(w(Y2O3)=0~7%)纳米粉体材料,并用X射线衍射仪、透射电镜等测试手段分析了材料的微观结构,并进行了气敏性能测试。研究发现:掺杂适量Y2O3可抑制α-Fe2O3晶粒的生长,提高粉体材料的气敏性能,其中掺杂量为5%的烧结型气敏元件在160℃的较低温度条件下,对汽油有较高的灵敏度,较好的选择性及响应–恢复特性,且线性检测范围较宽。  相似文献   

9.
采用溶胶-凝胶法制备了Sm1–xMgxFeO3(x=0,0.1,0.2,0.3,0.4,0.5,0.6)系列纳米粉体。利用XRD、TEM手段对产物进行表征,并对其酒敏性能进行了测试研究。结果表明:在800℃下热处理3 h所得的Sm1–xMgxFeO3粉体均为单一钙钛矿结构,粉体的晶胞体积和晶粒尺寸均随Mg2+含量的增大而减小。另外,在同等条件下,元件Sm0.7Mg0.3FeO3对乙醇的气敏性能最优,在工作温度为240℃时对体积分数为100×106的乙醇的灵敏度达到22.14,是Sm FeO3元件的6.05倍。同时还具有较好的选择性、响应-恢复特性与稳定性,响应时间和恢复时间分别为31 s和50 s。  相似文献   

10.
为了制备高灵敏度、快速响应、高选择性的室温NO_x气体传感器,采用简单的一步液相回流法合成出CuO纳米空心球气敏材料。通过XRD、SEM等表征手段对所合成材料的结构和形貌进行研究。结果表明,制备的CuO是由层状纳米片CuO组装成的直径约为500 nm的中空球状颗粒;将其作为电极材料组装成气敏元件,其在室温下对NO_x表现出很好的气敏性能:该材料对体积分数100×10~(–6) NO_x的响应时间为2.5 s,灵敏度可达70.96%;对NO_x最低检测限为体积分数2×10~(–6),灵敏度为13.23%。  相似文献   

11.
为了制备高灵敏度、快速响应、高选择性的室温NO_x气体传感器,采用简单的一步液相回流法合成出CuO纳米空心球气敏材料。通过XRD、SEM等表征手段对所合成材料的结构和形貌进行研究。结果表明,制备的CuO是由层状纳米片CuO组装成的直径约为500 nm的中空球状颗粒;将其作为电极材料组装成气敏元件,其在室温下对NO_x表现出很好的气敏性能:该材料对体积分数100×10^(–6) NO_x的响应时间为2.5 s,灵敏度可达70.96%;对NO_x最低检测限为体积分数2×10^(–6),灵敏度为13.23%。  相似文献   

12.
分别用钨酸钠或钨酸铵溶液及浓盐酸作原料,用直接沉淀法制备了含Na+和不含Na+的WO3粉体,并用XRD及粒度分布测试仪对其进行了表征。结果表明:产物分别是WO3/Na2W4O13混合氧化物及纯WO3,前者的平均粒径为4.459μm,后者为1.366μm。气敏测试结果表明:含Na+的WO3/Na2W4O13气敏元件对体积分数为50×10–6的H2S的灵敏度是164,恢复时间为35s。纯WO3气敏元件对体积分数为50×10–6的NO2及Cl2的气敏性能较好,其灵敏度分别为468与1635。  相似文献   

13.
sol-gel法制备镉掺杂铁酸镧气敏材料   总被引:1,自引:1,他引:0  
研究了气敏材料的制备条件、相组成、电导和气敏性能。结果表明:固溶体La1–xCdxFeO3(0≤x≤0.15)呈典型的p型半导体。270℃操作温度下,掺杂x(Cd2+)为25%的LaFeO3材料(700℃下热处理4h)对浓度为4.5×10–5mol·dm–3的C2H5OH的灵敏度达81.5。有望开发为一类新型的酒敏传感器。  相似文献   

14.
采用高温固溶工艺制备了Al3+,Fe3+和Ag+掺杂的T-ZnO气敏材料,并制作了烧结型厚膜气敏元件,测试了元件对H2S,NH3,C2H5OH和H2的敏感特性,研究了掺杂剂、掺杂工艺和材料形貌结构对T-ZnO材料气敏特性的影响规律。结果显示,T-ZnO材料对H2S和C2H5OH气体灵敏度较高,对H2和NH3等气体灵敏度较差;经过H2气氛热处理,掺物质的量百分数为0.1%Al3+的T-ZnO对气体表现出很高的灵敏度,在268.5℃时,对体积分数为10-4的H2S的灵敏度达160;同时,Al3+掺杂工艺改善了材料对H2S和C2H5OH的恢复-响应特性。在Fe3+掺杂ZnO样品中,出现第二相(ZnFe2O4)可以提高对气体的灵敏度。  相似文献   

15.
为改善WO3基敏感材料的气敏性能,采用微波回流法一次性合成了纳米WO3/TiO2复合材料,并研究TiO2掺杂量对用其制备的气敏元件气敏性能的影响。结果表明:此气敏元件对体积分数为100×10-6的NOx、二甲苯、H2S和丙酮气体具有较强的敏感性,掺杂w(TiO2)为20%的元件,对H2S和NOx的灵敏度分别为31.18和695.84;掺杂w(TiO2)为30%的元件,对二甲苯和丙酮的灵敏度分别为39.19和35.69。  相似文献   

16.
采用sol-gel法制备了一系列掺有SiO2的WO3纳米粉体,通过X射线衍射仪、透射电镜等测试手段分析了材料的微观结构,测试了材料的气敏性能,探讨了煅烧温度、掺杂量、工作温度等对材料气敏性能的影响。研究发现:适量SiO2的掺杂有利于提高WO3对NO2气体的灵敏度,其中SiO2掺杂量为3%(质量分数)的气敏元件,在150℃工作温度下,灵敏度达713,响应–恢复时间分别为7s与26s。对WO3的NO2气敏机理也进行了探讨。  相似文献   

17.
在不同的热氧化温度下,用液相生长热氧化法(RGTO)制备了SnO2薄膜。探讨了热氧化温度对SnO2薄膜结构和成分的影响,并进一步研究了不同热氧化温度下制备的SnO2薄膜的气敏性能。测试结果表明:260℃工作温度下,600℃热氧化制备的SnO2薄膜气敏元件,对氢气的灵敏度最佳。在100~1 000 mg.kg–1的氢气浓度范围内,灵敏度由47递增至70。  相似文献   

18.
固体电解质双功能气体传感器的研制   总被引:1,自引:0,他引:1  
以sol-gel法合成的NASICON为基体导电层材料,以掺杂C的Cr2O3和ZnO-TiO2分别作为对氨和甲苯敏感的电极材料,制备了一种能同时检测氨和甲苯的新型管式结构固体电解质双功能气体传感器。当工作温度为250~400℃时,传感器对浓度为(50~500)×10–6的氨和(5~50)×10–6的甲苯具有较好的气敏性能,其电动势E值与氨和甲苯浓度的对数呈线性关系,在350℃时,对氨和甲苯的灵敏度分别为–91mV/decade和–60mV/decade。并有较快的响应恢复时间和较好的选择性。  相似文献   

19.
利用溶胶–凝胶法成功合成了Cu2+掺杂改性的HoCoO3纳米材料。经X射线粉末衍射(XRD)仪和扫描电镜(SEM)表征后发现,所得HoCoO3纳米材料具有纯相的钙钛矿结构,其晶粒粒径为50~130 nm。将改性及未改性HoCoO3纳米材料分别制成气敏元件,并对其电性能和气敏性能进行对比研究,结果发现Cu2+掺杂可以明显降低HoCoO3气敏元件的电阻,并显著提高其对汽油的灵敏度和选择性。这表明Cu2+掺杂改性的HoCoO3纳米材料将来极有可能成为一种良好的汽油敏感材料。  相似文献   

20.
以SnCl_4·5H_2O与柠檬酸为原料,采用sol-gel法制备了掺杂质量分数w(Yb_2O_3)为0~1.0%的Yb_2O_3-SnO_2纳米粉体。利用XRD、TEM等测试手段分析了粉体的微观结构,采用静态配气法测试了由所制粉体制成的气敏元件对NO_2、Cl_2、H_2、H_2S、乙醇、甲醛等气体的气敏性能。结果表明:用该法得到的粉体颗粒粒径小,且均匀;工作温度为100℃时,由掺杂w(Yb_2O_3)为0.4%的SnO_2粉体,在烧结温度600℃制得的气敏元件,对体积分数为30×10–6的NO_2的灵敏度最高可达18224,且该元件具有较好的响应–恢复特性,响应时间和恢复时间分别是20s和15s。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号