共查询到17条相似文献,搜索用时 62 毫秒
1.
概述了国内外近10年来锂离子电池正极材料的研究进展;综述了几种主要的正极材料的性能优缺点及其目前的研究热点和发展方向。 相似文献
2.
3.
4.
5.
锂离子电池正极材料LiFePO_4的制备与改性进展 总被引:1,自引:1,他引:1
综述了锂离子电池正极材料LiFePO4的七种制备方法及其研究进展,评述了各种方法的优缺点。讨论了LiFePO4改性研究的最新成果,包括物理掺杂和体相掺杂,分析了各种改性方法提高LiFePO4电导率和电化学性能的可能机理,其中体相掺杂改性机理还存在一些争议。并对LiFePO4的研究方向进行了展望。 相似文献
6.
7.
8.
9.
介绍了我国废弃动力锂离子电池正极材料回收利用行业现状以及欧盟《新电池法案》关于废弃电池材料回收的要求。根据产业形势、正极材料回收与修复技术现状,对我国动力锂离子电池正极材料回收利用标准化现状进行分析并提出标准需求,重点对目前在编的两项锂离子电池正极材料回收、修复利用的电子行业标准中回收工艺和修复工艺内容进行研究,探讨了下一步亟待标准规范的内容。 相似文献
10.
11.
12.
13.
14.
15.
16.
《电子元件与材料》2018,(1):7-12
目前,商业上普遍使用石墨作为锂离子电池负极材料,由于其理论比容量较低(372 m Ah·g~(–1)),已经不能够满足锂离子电池的发展需求。研究发现,SnO_2作为负极材料可以和锂离子发生良好的可逆反应,且其可逆容量远高于石墨负极。但SnO_2在充放电过程中会出现颗粒粉化导致电极体积膨胀、裂解,从而影响锂电池的循环性能。通过加入石墨烯对SnO_2进行改性,不仅可以缓解SnO_2在运行过程中的体积膨胀,此外,石墨烯本身大的比表面积及良好的导电性,使得石墨烯/SnO_2材料具有较高的可逆容量及较好的循环稳定性。本文综述了几种不同方法制备石墨烯/SnO_2复合材料,在应用到锂离子电池负极材料时,均表现出良好的电化学性能。 相似文献
17.
通过添加碳纳米管共沉淀的方法制备了Fe3O4-CNTs复合材料。研究发现,CNTs不仅可以降低复合材料作为锂离子电池负极的阻抗,而且对活性物质Fe3O4起到很好的支撑作用,极大地提高了Fe3O4在充放电过程中的电化学稳定性。在0.5 A/g的电流密度下Fe3O4-CNTs循环200圈后的放电比容量保持在1406 mAh/g。在10 A/g的大电流密度下循环,第100圈时Fe3O4-CNTs的放电比容量稳定在230 mAh/g左右。循环至第9999圈时,Fe3O4-CNTs的比容量下降至179 mAh/g,只损失了50 mAh/g,充放电效率高达99.98%。Fe3O4-CNTs复合材料在大电流密度超长循环的背景下表现出优异的性能,对负极材料的开发有重要的意义。 相似文献