首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The neurofibromatosis type 2 tumor suppressor gene is inactivated in the development of familial and sporadic schwannomas and meningiomas. The encoded protein, Merlin, is closely related to the Ezrin, Radixin, and Moesin family of membrane/cytoskeletal linker proteins. Examination of Merlin in several cell lines revealed that the protein migrates as two distinct species near 70 kDa. Phosphatase treatment and orthophosphate labeling demonstrated that the species with decreased mobility is phosphorylated. Given Merlin's localization to cortical actin structures, we examined the effect of cell-cell contact or other forms of growth arrest on Merlin expression and post-translational modification. Under conditions of confluency or serum deprivation, the levels of phosphorylated and unphosphorylated Merlin species increased significantly. Cells arrested in G1 by other methods or other phases of the cell cycle did not show changes in Merlin levels. Furthermore, loss of adhesion resulted in a nearly complete dephosphorylation of Merlin, which was reversed upon re-plating of cells, suggesting Merlin phosphorylation may be responsive to cell spreading or changes in cell shape. Thus, the tumor suppressor function of Merlin may involve the regulation of cellular responses to cues such as cell-cell contact, growth factor microenvironment, or changes in cell shape.  相似文献   

3.
Members of the transforming growth factor-beta (TGF-beta) family, which includes the activins, relay signals from serine/threonine kinase receptors in membrane to nucleus via intracellular Sma- and Mad-related (Smad) proteins. Inhibitory Smad proteins were found to prevent the interaction between the serine/threonine kinase receptors and pathway-restricted Smad proteins. Smad7 was identified as a TGF-beta-inducible antagonist of TGF-beta signaling, and it may participate in a negative feedback loop to control TGF-beta signaling. Here we demonstrate that the mRNA expression of Smad7 is induced by activin A in mouse B cell hybridoma HS-72 cells, which undergo growth arrest and apoptosis upon exposure to activin A. The ectopic expression of mouse Smad7 in HS-72 cells suppressed the activin A-induced cell cycle arrest in the G1 phase by abolishing the activin A-induced expression of p21(CIP1/WAF1) and hypophosphorylation of retinoblastoma protein. Furthermore, Smad7 expression suppressed activin A-induced apoptosis in HS-72 cells. Thus, our data indicate that Smad7 is an activin A-inducible antagonist of activin A-induced growth arrest and apoptosis of B lineage cells.  相似文献   

4.
The immunosuppressive macrolide, rapamycin, impedes the G1 to S cell cycle progression in cytokine-stimulated normal lymphocytes and in certain autonomously proliferating cell lines. Here, we found that the rapamycin-induced growth arrest augments homotypic aggregation in the YAC-1 T cell lymphoma. The growth arrest and increased aggregation were both blocked by the rapamycin antagonist, L-685,818, which interacts with the intracellular binding proteins mediating rapamycin's biochemical action. Moreover, rapamycin-induced aggregation was not seen in YAC-1 cells mutants selected for resistance to the drug's antiproliferative effect. Although the inhibition of G1/S progression induced by serum deprivation also resulted in increased cellular aggregation, cell cycle blockade in late G1 by mimosine, early S phase by hydroxyurea, or G2/M by nocodazole all failed to do so. Furthermore, the aggregation induced by rapamycin was blocked by antibodies to the alpha (CD11a) or beta (CD18) subunits of the integrin, LFA-1, or to its ligands, ICAM-1 and ICAM-2, and did not occur in LFA-1-deficient YAC mutants. However, the surface expression of LFA-1, ICAM-1, or ICAM-2 was not augmented in cells aggregated by rapamycin. Finally, the serine/threonine protein phosphatase inhibitor, okadaic acid, was found to abrogate rapamycin-induced aggregation. Therefore, rapamycin's impairment of YAC-1 cell growth in G1 is accompanied by enhanced LFA-1-mediated homotypic cell adhesion that may reflect an increase of the integrin's avidity for its ligands and may involve protein phosphorylation/dephosphorylation events. This suggests the existence of a link between cell cycle progression and "inside-out" LFA-1 signaling, possibly regulated by rapamycin's biochemical targets.  相似文献   

5.
6.
We previously reported that inostamycin, an inhibitor of CDP-DG: inositol transferase, inhibited cell proliferation in normal rat kidney (NRK) cells by blocking cell cycle progression at the G1 phase. In the present paper, we report the effect of inostamycin on the serum-induced activation of Ser/Thr protein kinases that are involved in G1 progression. In quiescent NRK cells mitogen-activated protein kinase (MAP kinase) and casein kinase II were activated within 15 min after serum addition. Neither activation was affected by the treatment with inostamycin. However, in the inostamycin-treated cell, cyclin-dependent kinase 2 (CDK2) failed to be activated after serum stimulation. Since serum-induced expression of cyclin E was also suppressed by inostamycin, this inhibitor would appear to block CDK2 activation by inhibiting cyclin E expression. Furthermore, inostamycin also inhibited cyclin D1 expression induced by serum; and consequently, hyperphosphorylation of retinoblastoma protein (pRB) by RB-kinases such as CDK4 and CDK2 was abolished, which would result in elimination of functional inactivation of pRB. Thus, early G1 arrest in NRK cells by inostamycin is due to the inhibition of cyclin D1 and E expressions.  相似文献   

7.
8.
In Saccharomyces cerevisiae, the phosphatidylinositol kinase homologue Tor2 controls the cell-cycle-dependent organisation of the actin cytoskeleton by activating the small GTPase Rho1 via the exchange factor Rom2 [1,2]. Four Rho1 effectors are known, protein kinase C 1 (Pkc1), the formin-family protein Bni1, the glucan synthase Fks and the signalling protein Skn7 [2,3]. Rho1 has been suggested to signal to the actin cytoskeleton via Bni1 and Pkc1; rho1 mutants have never been shown to have defects in actin organisation, however [2,4]. We have further investigated the role of Rho1 in controlling actin organisation and have analysed which of the Rho1 effectors mediates Tor2 signalling to the actin cytoskeleton. We show that some, but not all, rho1 temperature-sensitive (rho1ts) mutants arrest growth with a disorganised actin cytoskeleton. Both the growth defect and the actin organisation defect of the rho1-2ts mutant were suppressed by upregulation of Pkc1 but not by upregulation of Bni1, Fks or Skn7. Overexpression of Pkc1, but not overexpression of Bni1, Fks or Skn7, also rescued a tor2ts mutant, and deletion of BNI1 or SKN7 did not prevent the suppression of the tor2ts mutation by overexpressed Rom2. Furthermore, overexpression of the Pkc1-controlled mitogen-activated protein (MAP) kinase Mpk1 suppressed the actin defect of tor2ts and rho1-2ts mutants. Thus, Tor2 signals to the actin cytoskeleton via Rho1, Pkc1 and the cell integrity MAP kinase cascade.  相似文献   

9.
Activins transduce their signals by binding to activin type I receptors and activin type II receptors, both of which contain a serine/threonine kinase domain. In this study, we established stable transfectants expressing two types of activin receptors, ActRI and ActRIB, to clarify the role of these receptors in activin signalling for growth inhibition in HS-72 mouse B-cell hybridoma cells. Over-expression of ActRI suppressed activin A-induced cell-cycle arrest in the G1 phase caused by inhibition of retinoblastoma protein phosphorylation through induction of p21CIP1/WAF1, a cyclin-dependent kinase inhibitor, and subsequent apoptosis. In contrast, HS-72 clones that over-expressed ActRIB significantly facilitated activin A-induced apoptosis. These results indicate that ActRI and ActRIB are distinct from each other and that the ActRI/ActRIB expression ratio could regulate cell-cycle arrest in the G1 phase and subsequent apoptosis in HS-72 cells induced by activin A.  相似文献   

10.
11.
Fostriecin, a structurally unique phosphate ester, is presently under evaluation in clinical trials to determine its potential use as an antitumor drug in humans. Fostriecin has been reported as having inhibitory activity against DNA topoisomerase type II and protein phosphatases implicated in cell-cycle control. However, the relative contribution of these mechanisms to the antitumor activity of fostriecin has not yet been elucidated. In this study, after confirming that fostriecin is a potent inhibitor of serine/threonine protein phosphatase type 2A and a weak inhibitor of serine/threonine protein phosphatase type 1, we show that fostriecin inhibits approximately 50% of the divalent cation independent serine/threonine protein phosphatase (PPase) activity contained in whole cell homogenates of Chinese hamster ovary cells at concentrations associated with antitumor activity (1-20 microM). Investigations into the cellular effects produced by fostriecin treatment reveal that 1-20 microM fostriecin induces a dose-dependent arrest of cell growth during the G2-M phase of the cell cycle. Immunostaining of treated cells indicates that growth arrest occurs before the completion of mitosis and that fostriecin-induced growth arrest is associated with the aberrant amplification of centrosomes, which results in the formation of abnormal mitotic spindles. The "mitotic block" induced by fostriecin is reversible if treatment is discontinued in <24 h. However, after approximately 24-30 h of continuous treatment, growth arrest is not reversible, and treated cells die even when placed in fostriecin-free media. Correlative studies conducted with established PPase inhibitors reveal that, when applied at concentrations that inhibit PPase activity to a comparable extent, both okadaic acid and cantharidin also induce aberrant centrosome replication, the appearance of multiple aberrant mitotic spindles, and G2-M-phase growth arrest. These studies add additional support to the concept that PPase inhibition underlies the antitumor activity of fostriecin and suggest that other type-selective PPase inhibitors should be evaluated for potential antitumor activity.  相似文献   

12.
13.
14.
The effects of three inducers of differentiation, phorbol myristate acetate (PMA), retinoic acid (RA) and interferon-gamma (IFN-gamma), on the temporal regulation of vitamin D receptor (VDR) expression in HL-60 cells were analyzed by Northern blotting and immunofluorescence assays. VDR, at the protein level, expressed by 81% of uninduced cells, was reduced to 57% after 48 h of PMA or 96 h of RA treatment, preceded by growth inhibition and cell differentiation, evaluated by CD11b expression. Sorted CD11b positive cells in G0/G1 phase exhibited 53% the VDR content of CD11b negative cells (distributed throughout the cell cycle). PMA also induced an increase in PKC beta and PKC alpha mRNA and protein. Simultaneous exposure to PMA and sphingosine blocked stimulation of CD11b and PKC expression without affecting growth arrest and VDR down regulation. Similar effects were observed during sphingosine treatment. In IFN-gamma differentiated cells, the proportion of cells in G0/G1 phase was unchanged and VDR protein was unaltered as compared to uninduced cells. Control cells in G0/G1 expressed less VDR than cells in S and G2/M phases (74% and 59% respectively). All results suggest that in HL-60 cells, reduction of VDR expression is related to growth inhibition rather than to the differentiation process.  相似文献   

15.
Somatostatin (SST) exerts direct antiproliferative effects in tumor cells, triggering either growth arrest or apoptosis. The cellular actions of SST are transduced through a family of five distinct somatostatin receptor subtypes (SSTR1-5). Whereas growth inhibition has been reported to follow stimulation of protein tyrosine phosphatase via SSTR2 or inhibition of Ca2+ channels via SSTR5 in heterologous expression systems, the subtype selectivity for signaling apoptosis has not been investigated. The tumor suppressor protein p53 and the protooncogene product c-Myc regulate cell cycle progression (growth factors present) or apoptosis (growth factors absent). The p53-induced G1 arrest requires induction of p21, an inhibitor of cyclin-dependent kinases, whereas apoptosis requires induction of Bax. c-Myc is capable of abrogating p53-induced G1 arrest by interfering with the inhibitory action of p21 on cyclin-dependent kinases. We have, therefore, investigated the regulation of p53, p21, c-Myc, and Bax and cellular apoptosis in relation to cell cycle progression in CHO-K1 cells stably expressing individual human SSTR1-5. We demonstrate that apoptosis is signaled uniquely through human SSTR3 and is associated with dephosphorylation-dependent conformational change in wild-type (wt) p53 as well as induction of Bax. The induction of wt p53 occurs rapidly and precedes the onset of apoptosis. We show that the increase in wt p53 is not associated with the induction of p21 or c-Myc when octreotide-induced apoptosis becomes evident, suggesting that such apoptosis does not require G1 arrest and is not c-Myc dependent. These findings provide the first evidence for hormonal induction of wt p53-associated apoptosis via G protein-coupled receptor in a subtype-selective manner.  相似文献   

16.
17.
18.
19.
The characterization of growth arrest-associated genes has revealed that cells actively suppress mitotic growth in response to extracellular signals. Mouse 3T3-L1 cells growth arrest at multiple distinct points during terminal differentiation to adipocytes. We examined the expression of growth arrest-specific (gas) and growth arrest- and DNA damage-inducible (gadd) genes as a function of 3T3-L1 growth arrest and adipocyte development. These growth arrest-associated genes are differentially expressed throughout adipocyte development. Some of the gas/gadd genes are preferentially expressed in a subset of growth arrest states. In contrast, gas1 and gas3 are expressed in serum-starved adipoblasts, contact-inhibited adipoblasts, and post-mitotic adipocytes. However, in post-mitotic adipocytes, gas1 and gas3 are induced in response to nutrient deprivation, not altered growth status. gas6 is an exception to the general concordance of mitotic growth arrest and gas/gadd expression in that gas6 is preferentially expressed during the clonal expansion of postconfluent adipoblasts. Combined, the expression patterns indicate that growth arrest-associated genes are regulated by numerous signal transduction pathways throughout a discrete developmental transition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号