首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microstructures from the reaction between Au and Sn under different conditions were studied. A Sn/Au/Ni sandwich structure (2.5/3.752 μm) was deposited over the Si wafer. The overall composition of the Au and Sn layers corresponded to the Au20Sn binary eutectic (wt.%). When the reaction condition was 290°C for 2 min, the microstructure produced was a typical two-phase (Au5Sn and AuSn) eutectic microstructure over Ni. In contrast, when the reaction condition was 240°C for 2 min, a AuSn/Au5Sn/Ni layered microstructure was produced. In both microstructures, a small amount of Ni was dissolved in Au5Sn and AuSn. When the AuSn/Au5Sn/Ni layered structure was subjected to aging at 240°C, the AuSn layer gradually exchanged its position with the Au5Sn layer and eventually formed an Au5Sn/AuSn/Ni three-layer structure in less than 9 h. The driving force for Au5Sn and AuSn to exchange their positions is for the AuSn phase to seek more Ni. The dominant diffusing species for the AuSn and Au5Sn has also been identified to be Au and Sn, respectively.  相似文献   

2.
Wetting reactions between eutectic AuSn solder and Au foil have been studied. During the reflow process, Au foil dissolution occurred at the interface of AuSn/Au, which increases with temperature and time. The activation energy for Au dissolution in molten AuSn solder is determined to be 41.7 kJ/mol. Au5Sn is the dominant interfacial compound phase formed at the interface. The activation energy for the growth of the interfacial Au5Sn phase layer is 54.3 kJ/mol over the temperature range 360–440°C. The best wettability of molten AuSn solder balls on Au foils occurred at 390°C (wetting angle is about 25°). Above 390°C, the higher solder oxidation rate retarded the wetting of the molten AuSn solder.  相似文献   

3.
Study of wetting reaction between eutectic AuSn and Au foil   总被引:1,自引:0,他引:1  
Wetting reactions between eutectic AuSn solder and Au foil have been studied. During the reflow process, Au foil dissolution occurred at the interface of AuSn/Au, which increases with temperature and time. The activation energy for Au dissolution in molten AuSn solder is determined to be 41.7 kJ/mol. Au5Sn is the dominant interfacial compound phase formed at the interface. The activation energy for the growth of interfacial Au5Sn phase layer is obtained to be 54.3 kJ/mol over the temperature range 360–440°C. The best wettability of molten AuSn solder balls on Au foils occurred at 390°C (wetting angle is about 25°). Above 390°C, the higher solder oxidation rate retarded the wetting of the molten AuSn solder.  相似文献   

4.
Three Sn-rich, Au-Sn alloy solders with eutectic, hypoeutectic, and hypereutectic Sn compositions were fabricated by sequential electroplating of Au and Sn and then the dual-layer films were reflowed at 250°C. The microstructures and phase compositions of the deposited Au/Sn dual-layer film and the reflowed Sn-rich Au-Sn alloys were studied. Microhardness values of the different phases or phase zones for the reflowed alloys were also tested. Finally, two Si wafers were bonded together with the eutectic Sn-rich Au-Sn alloy solder. For as deposited Au/Sn dual-layer films, reaction between Au and Sn occurs at room temperature leading to the formation of Au5Sn, AuSn, and AuSn2 at the Au/Sn interface. After reflowing at 250°C, two phases remain, Sn and AuSn4, with the morphology and phase distribution depending on the original solder composition. In the Sn-rich, eutectic Au-Sn alloy, AuSn4 particles are distributed uniformly in the Sn matrix. In the Sn-rich hypoeutectic/hypereutectic Au-Sn alloys, the proeutectic phase, AuSn4 (Vickers hardness, Hv 125) or Sn (Hv 14.2), is larger in size and is surrounded by the eutectic zone (Sn + AuSn4) (Hv 16.1). In all cases, the TiW adhesion and barrier layer remains intact during annealing. After reflowing at 250°C under a pressure of 13 kPa, two Si wafers are joined by the Sn-rich eutectic Au-Sn alloy solder, without crack or void formation at the Si wafer/solder interface or within the solder.  相似文献   

5.
The microstructure of the ultrasmall eutectic Bi-Sn solder bumps on Au/Cu/Ti and Au/Ni/Ti under-bump metallizations (UBMs) was investigated as a function of cooling rate. The ultrasmall eutectic Bi-Sn solder bump, about 50 μm in diameter, was fabricated by using the lift-off method and reflowed at various cooling rates using the rapid thermal annealing system. The microstructure of the solder bump was observed using a backscattered electron (BSE) image and the intermetallic compound was identified using energy dispersive spectroscopy (EDS) and an x-ray diffractometer (XRD). The Bi facet was found at the surface of the ultrasmall Bi-Sn solder bumps on the Au/Cu/Ti UBM in almost all specimens, and the interior microstructure of the bumps was changed with the solidification rate. The faceted and polygonal intermetallic compound was found in the case of the Bi-Sn solder bump on the Au (0.1 μm)/Ni/Ti UBM, and it was confirmed to be the (Au1−x−yBixNiy)Sn2 phase by XRD. The intermetallic compounds grown form the Au (0.1 μm)/Ni/Ti UBM interface, and they interrupted the growth of Bi and Sn phases throughout the solder bump. The ultrasmall eutectic Bi-Sn solder bumps on the Au (0.025 μm)/Ni/Ti UBM showed similar microstructures to those on the Au/Cu/Ti UBM.  相似文献   

6.
The eutectic Au80Sn20 solder alloy has been applied in semiconductor assemblies and other industries for years. Due to some superior physical properties, Au/Sn alloy gradually becomes one of the best materials for soldering in electronic devices and components packaging but the voids growth in AuSn solder joints is one of the many critical factors governing the solder joint reliability. Voids may degrade the mechanical robustness of the die attach and consequently affect the reliability and thermal conducting performance of the assembly. Severe thermal cycles [− 55 °C/+175 °C] have highlighted degradations in AuSn die attach solder. The inspection of as-prepared die-attachments by X-ray and SEM (observation of cross-section) shows that the initial voids sizes were increased and a propagation of transverse cracks inside the joint between voids has appeared after ageing, it was featured also the existence of the IMC typical scallop-shape morphology with the phase structure of (Ni, Au)3Sn2 on as-reflowed joints. In this paper, we evaluate the origin of these degradations and ways to address them.  相似文献   

7.
The deposition of AuSn solder at the eutectic composition (80 wt.% Au, 20 wt.% Sn) on a wetted, chemically inert metallic barrier has been studied in relation to its use in optoelectronic packaging. The bonding structure, consisting of a W barrier, the top part of which is doped with Ni (or Ti) to provide wetting by molten AuSn, and the homogeneous 80–20 AuSn solder several micrometers thick, has been grown by the Pulsed Laser-assisted Deposition (PLD) technique on 2″ silicon wafers. The composition of the AuSn layer was controlled within better than 1 wt.% as probed by EDX across the wafer diameter. The molten solder exhibited good wetting properties on the W modified layer and the whole structure was found to be chemically stable against thermal cycling at 320°C for over 3 min. The use of molten AuSn targets makes the PLD technique a most competitive one for the achievement of high quality and reliable AuSn solder.  相似文献   

8.
Recent work has shown that a Au−Ni−Sn ternary compound with a nominal composition of Au0.5Ni0.5Sn4 redeposits and grows at the interface between eutectic Pb−Sn solder and Ni/Au metallization during aging at 150°C. The present work verifies the existence of the Au0.5Ni0.5Sn4 phase by examining the Sn-rich corner of the Au−Ni−Sn ternary phase diagram. The reconfiguration mechanism of the AuSn4 from the bulk solder is also discussed, with detailed observations of the Au0.5Ni0.5Sn4 microstructure. The results show that the Ni solubility limit in the AuSn4 phase is approximately 12 at.% at 150°C and thus, the Au0.5Ni0.5Sn4 phase is a ternary AuSn4-based compound with high Ni solubility. Due to the slight solubility and the fast diffusion of Au in the eutectic Pb−Sn at 150°C, the AuSn4 intermetallics in the bulk solder can reconfigure to form a AuxNi1−xSn4 compound at the interface where Ni is available. The AuxNi1−xSn4 compound layer consists of nanocrystals arranged in a larger grainlike morphology. It appears that the inherent lattice strain of the AuxNi1−xSn4 compound and the volume change due to its formation results in a nanocrystalline microstructure.  相似文献   

9.
A fluxless process of bonding large silicon chips to ceramic packages has been developed using a Au-Sn eutectic solder. The solder was initially electroplated in the form of a Au/Sn/Au multilayer structure on a ceramic package and reflowed at 430°C for 10 min to achieve a uniform eutectic 80Au-20Sn composition. A 9 mm × 9 mm silicon chip deposited with Cr/Au dual layers was then bonded to the ceramic package at 320°C for 3 min. The reflow and bonding processes were performed in a 50-mTorr vacuum to suppress oxidation. Therefore, no flux was used. Even without any flux, high-quality joints were produced. Microstructure and composition of the joints were studied using scanning electron microscopy with energy-dispersive x-ray spectro- scopy. Scanning acoustic microscopy was used to verify the joint quality over the entire bonding area. To employ the x-ray diffraction method, samples were made by reflowing the Au/Sn/Au structure plated on a package. This was followed by a bonding process, without a Si chip, so that x-rays could scan the solder surface. Joints exhibited a typical eutectic structure and consisted of (Au,Ni)Sn and (Au,Ni)5Sn phases. This novel fluxless bonding method can be applied to packaging of a variety of devices on ceramic packages. Its fluxless nature is particularly valuable for packaging devices that cannot be exposed to flux such as sensors, optical devices, medical devices, and laser diodes.  相似文献   

10.
In this work we studied the initial microstructure and microstructural evolution of eutectic Au-Sn solder bumps on Cu/electroless Ni/Au. The solder bumps were 150–160 m in diameter and 45–50 m tall, reflowed on Cu/electroless Ni/Au, and then aged at 200°C for up to 365 days. In addition, Au-Ni-Sn-alloys were made and analyzed to help identify the phases that appear at the interface during aging. The detailed interfacial microstructure was observed using a transmission electron microscope (TEM). The results show that the introduction of Au from the substrate produces large islands of-phase in the bulk microstructure during reflow. Two Au-Ni-Sn compounds are formed at the solder/substrate interface and grow slowly during aging. The maximum solubility of Ni in the—phase was measured to be about 1 at.% at 200°C, while Ni in the-phase is more than 20 at.%. The electroless Ni layer is made of several sublayers with slightly different compositions and microstructures. There is, in addition, an amorphous interaction layer at the solder/electroless Ni interface.  相似文献   

11.
The effects of adding a small amount of Cu into eutectic PbSn solder on the interfacial reaction between the solder and the Au/Ni/Cu metallization were studied. Solder balls of two different compositions, 37Pb-63Sn (wt.%) and 36.8Pb-62.7Sn-0.5Cu, were used. The Au layer (1 ± 0.2 μm) and Ni layer (7 ± 1 μm) in the Au/Ni/Cu metallization were deposited by electroplating. After reflow, the solder joints were aged at 160°C for times ranging from 0 h to 2,000 h. For solder joints without Cu added (37Pb-63Sn), a thick layer of (Au1−xNix)Sn4 was deposited over the Ni3Sn4 layer after the aging. This thick layer of (Au1−xNix)Sn4 can severely weaken the solder joints. However, the addition of 0.5wt.%Cu (36.8Pb-62.7Sn-0.5Cu) completely inhibited the deposition of the (Au1−xNix)Sn4 layer. Only a layer of (Cu1-p-qAupNiq)6Sn5 formed at the interface of the Cu-doped solder joints. Moreover, it was discovered that the formation of (Cu1-p-qAupNiq)6Sn5 significantly reduced the consumption rate of the Ni layer. This reduction in Ni consumption suggests that a thinner Ni layer can be used in Cu-doped solder joints. Rationalizations for these effects are presented in this paper.  相似文献   

12.
To achieve precise, hermetic, and reliable optoelectronic packaging, we studied a novel technology for bonding fibers to v-grooved chips by metallic soldering. Multilayered metallization of Ti/Au, Ti/Cu/Au, or Ti/Ni/Au has been prepared to improve the poor bonding nature of solder on oxide surface. The eutectic 43Sn57Bi (wt.%) alloy, having a melting point of 139°C, was selected to bond the fibers to v-grooved chips. The alignment and adhesion tests result show that the precision packaging by soldering has a satisfied reliability in the range of working temperature from −40°C to 85°C. The metallic solder bonding is hermetic, and hence, it can isolate the optical device from ambient environment.  相似文献   

13.
The interfacial reaction between two prototype multicomponent lead-free solders, Sn-3.4Ag-1Bi-0.7Cu-4In and Sn-3.4Ag-3Bi-0.7Cu-4In (mass%), and Ag, Cu, Ni, and Pd substrates are studied at 250°C and 150°C. The microstructural characterization of the solder bumps is carried out by scanning electron microscopy (SEM) coupled with energy dispersive x-ray analysis. Ambient temperature, isotropic elastic properties (bulk, shear, and Young’s moduli and Poisson’s ratio) of these solders along with eutectic Sn-Ag, Sn-Bi, and Sn-Zn solders are measured. The isotropic elastic moduli of multicomponent solders are very similar to the eutectic Sn-Ag solder. The measured solubility of the base metal in liquid solders at 250°C agrees very well with the solubility limits reported in assessed Sn-X (X=Ag, Cu, Ni, Pd) phase diagrams. The measured contact angles were generally less than 15° on Cu and Pd substrates, while they were between 25° and 30° on Ag and Ni substrates. The observed intermediate phases in Ag/solder couples were Ag3Sn after reflow at 250°C and Ag3Sn and ζ (Ag-Sn) after solid-state aging at 150°C. In Cu/solder and Ni/solder couples, the interfacial phases were Cu6Sn5 and (Cu,Ni)6Sn5, respectively. In Pd/solder couples, only PdSn4 after 60-sec reflow, while both PdSn4 and PdSn3 after 300-sec reflow, were observed.  相似文献   

14.
Various microstructural zones were observed in the solidified solder of flip-chip solder joints with three metal bond-pad configurations (Cu/Sn/Cu, Ni/Sn/Cu, and Cu/Sn/Ni). The developed microstructures of the solidified flip-chip solder joints were strongly related to the associated metal bond pad. A hypoeutectic microstructure always developed near the Ni bond pad, and a eutectic or hypereutectic microstructure formed near the Cu pad. The effect of the metal bond pads on the solder microstructure alters the Cu solubility in the molten solder. The Cu content (solubility) in the molten Sn(Cu) solder eventually leads to the development of particular microstructures. In addition to the effect of the associated metal bond pads, the developed microstructure of the flip-chip solder joint depends on the configuration of the metal bond pads. A hypereutectic microstructure formed near the bottom Cu pad, and a eutectic microstructure formed near the top Cu pad. Directional cooling in the flip-chip solder joint during the solidification process causes the effects of the metal bond-pad configuration. Directional cooling causes the Cu content to vary in the liquid Sn(Cu) phase, resulting in the formation of distinct microstructural zones in the developed microstructure of the flip-chip solder joint.  相似文献   

15.
The intermetallic compounds (IMCs) formed during the reflow and aging of Sn3Ag0.5Cu and Sn3Ag0.5Cu0.06Ni0.01Ge solder BGA packages with Au/Ni surface finishes were investigated. After reflow, the thickness of (Cu, Ni, Au)6Sn5 interfacial IMCs in Sn3Ag0.5Cu0.06Ni0.01Ge was similar to that in the Sn3Ag0.5Cu specimen. The interiors of the solder balls in both packages contained Ag3Sn precipitates and brick-shaped AuSn4 IMCs. After aging at 150°C, the growth thickness of the interfacial (Ni, Cu, Au)3Sn4 intermetallic layers and the consumption of the Ni surface-finished layer on Cu the pads in Sn3Ag0.5Cu0.06Ni0.01Ge solder joints were both slightly less than those in Sn3Ag0.5Cu. In addition, a coarsening phenomenon for AuSn4 IMCs could be observed in the solder matrix of Sn3Ag0.5Cu, yet this phenomenon did not occur in the case of Sn3Ag0.5Cu0.06Ni0.01Ge. Ball shear tests revealed that the reflowed Sn3Ag0.5Cu0.06Ni0.01Ge packages possessed bonding strengths similar to those of the Sn3Ag0.5Cu. However, aging treatment caused the ball shear strength in the Sn3Ag0.5Cu packages to degrade more than that in the Sn3Ag0.5Cu0.06Ni0.01Ge packages.  相似文献   

16.
AuSn20焊料环是高可靠密封工艺中一种常用的密封材料,采用差示扫描量热法对进口AuSn20焊料环进行熔化和凝固温度的检测,探明其熔化温度为280℃,凝固温度为277℃,AuSn20焊料环纯度很高几乎无杂质.通过对进口和国产AuSn20焊料环的表面状态形貌进行对比,发现均为AuSn和Au5Sn的均匀分布状态,未见明显区...  相似文献   

17.
Gold over Ni is one of the most common surface finishes for Cu soldering pads in ball-grid-array (BGA) and other electronic packages. The Au layer is for oxidation protection, and the Ni layer serves as a solderable diffusion barrier. In this study, eutectic Pb-Sn solder-balls were reflowed on the Au/Ni/Cu pads, and the chemical interactions between the solder and the surface finish were studied. Quenched-in microstructures at different stages of the reflow were carefully examined using the scanning electron microscopy. It was found that the solder melted locally along the solder/pad interface at the very early stages of the reflow before the whole solder ball had reached the Pb-Sn eutectic temperature. This was because a ternary eutectic reaction L=(Pb)+(Sn)+AuSn4 occurred at 177°C, six degrees below the Pb-Sn eutectic temperature. Four distinct stages were identified for the reflow process. The four stages are: (1) partial melting of solder balls and the initial reaction of Au with Sn; (2) complete reaction of An with Sn; (3) separation of (AuxNi1-x)Sn4 from the pad; (4) complete melting of solder balls and the reaction of Ni with Sn. After a typical reflow, with a 225°C peak reflow temperature and 115 s reflow time, all the An and Au-bearing intermetallic compounds left the interface and the only intermetallic compound at the interface was Ni3Sn4 with a thickness of about 2 μm  相似文献   

18.
As an alternative to the time-consuming solder pastes and preforms currently being used, a method of electroplating the eutectic Au/Sn alloy has been developed. Using a pulsed co-deposition process, it is possible to plate the solder directly onto a wafer at or near the eutectic composition from a single solution. It has been shown that two distinct phase, Au5Sn and AuSn, can be deposited separately over a range of current densities at compositions of 15 at. %Sn and 50 at. %Sn, respectively. by adjusting the deposition current pulse, it is possible to plate both phases in a layered composite thereby achieving any desired composition between 15 and 50 at. %Sn, including the commercially important eutectic composition.  相似文献   

19.
The reactive interdiffusion between a Sn-3.0wt.%Ag-0.7wt.%Cu solder and thin-film Ti/Ni/Ag metallizations on two semiconductor devices, a diode and a metal-oxide-semiconductor field-effect transistor (MOSFET), and a Au-layer on the substrates are studied. Comprehensive microanalytical techniques, scanning electron microscopy, transmission electron microscopy (TEM), and analytical electron microscopy (AEM) are employed to identify the interdiffusion processes during fabrication and service of the devices. During the reflow process of both diode and MOSFET devices, (1) the Ag layer dissolves in the liquid solder; (2) two intermetallics, (Ni,Cu)3Sn4 and (Cu,Ni)6Sn5, form near the back metal/solder interface; and (3) the Au metallization in the substrate side dissolves in the liquid solder, resulting in precipitation of the (Au,Ni,Cu)Sn4 intermetallic during solidification. During solid-state aging of both diode and MOSFET solder joints at 125°C and 200°C, the following atomic transport processes occur: (1) interdiffusion of Cu, Ni, and Sn, leading to the growth of a (Ni,Cu)3Sn4 layer until the Ni layer is completely consumed; (2) interdiffusion of Au, Cu, Ni, and Sn through the (Ni,Cu)3Sn4 layer and unconsumed Ni layer to the Ti layer to form a solid solution; and (3) further interdiffusion of Au, Cu, Ni, and Sn through the (Ni,Cu)3Sn4 layer to from an (Au,Ti,Ni,Cu)Sn4 layer. The growth of the latter layer continues until the entire Ti layer is consumed.  相似文献   

20.
High-temperature electronics will facilitate deeper drilling, accessing harder-to-reach fossil fuels in oil and gas industry. A key requirement is reliability under harsh conditions for a minimum continuous operating time of 500?h at 300°C. Eutectic solder alloys are generally favored due to their excellent fatigue resistance. Performance of Au-Ge and Au-Si eutectic solder alloys at 300°C up to 500?h has been evaluated. Nanoindentation results confirm the loss of strength of Au-Ge and Au-Si eutectic solder alloys during thermal aging at 300°C, as a result of grain coarsening. However, the pace at which the Au-Ge eutectic alloy loses its strength is much slower when compared with Au-Si eutectic alloy. The interfacial reactions between these eutectic solder alloys and the underbump metallization (UBM), i.e., electroless nickel immersion gold (ENIG) UBM and Cu/Au UBM, have been extensively studied. Spalling of Au3Cu intermetallic compound is observed at the interface between Au-Ge eutectic solder and the Cu/Au UBM, when aged at 300°C for 500?h, while the consumption of ENIG UBM is nominal. Unlike the Au-Si solder joint, hot ball shear testing at high temperature confirmed that the Au-Ge joint on ENIG UBM, when aged at 300°C for 500?h, could still comply with the minimum qualifying bump shear strength based on the UBM dimension used in this work. Thus, it has been determined that, among these two binary eutectic alloys, Au-Ge eutectic alloy could fulfill the minimum requirement specified by the oil and gas exploration industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号