首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The effects of thermal annealing on the microstructure and morphology of erbium films were investigated by X-ray diffraction and scanning electron microscopy. All the erbium films were fabricated by electron-beam vapor deposition. The columnar grain sizes of as-received erbium films increased with the substrate temperatures and were enlarged by the coalescence and migration of grains during the high temperature annealing. The intrinsic stresses of erbium films, fabricated at a low substrate temperature (200 °C), were relaxed accompanied with the appearance of cracks on the films surface. The films deposited at 200 °C had (002) preferred orientation, and the film deposited at 450 °C had mixed (100) and (101) texture. The peak positions and the full width at half maximum of (100), (002), and (101) diffraction lines of erbium shift towards higher angles and sharply decrease during the annealing process, indicating that the stress inside the film was relaxed.  相似文献   

2.
M.T. Yu 《Thin solid films》2008,516(7):1563-1568
We investigated the physical and electrical properties of Hf-Zr mixed high-k oxide films obtained by the oxidation and annealing of multi-layered metal films (i.e., Hf/Zr/Hf/Zr/Hf, ∼ 5 nm). We demonstrated that the oxidation of multi-layered metal films results in two distinctive amorphous layers: That is, Hf-Zr mixed oxide film was formed on the top of silicate film due to inter-diffusion between Hf and Zr layer. This film shows the improved dielectric constant (k) and the raised crystallization temperature. Compared with HfO2 and ZrO2 gate dielectric, the crystallization temperature of Hf-Zr mixed oxides was raised by more than 200 °C. Using AES and XPS, we observed that Zr oxide has more fully oxidized stoichiometry than Hf oxide, irrespective of annealing temperatures. We also found that the thickness of an interfacial layer located between Hf-Zr mixed oxide and Si substrate also increases as annealing temperature increases. Especially, the thin SiOx interfacial layer starts to form if annealing temperature increases over 700 °C, deteriorating the equivalent oxide thickness.  相似文献   

3.
Shailja Tiwari 《Thin solid films》2009,517(11):3253-3256
Magnetite (Fe3O4) thin films are prepared by pulsed laser deposition using an α-Fe2O3 target on silicon (111) substrate in the substrate temperature range of 350 °C to 550 °C. X-ray diffraction (XRD) measurement shows that the film deposited at 450 °C is a single phase Fe3O4 film oriented along [111] direction. However, the film grown at 350 °C reveals mixed oxide phases (FeO and Fe3O4), while the film deposited at 550 °C is a polycrystalline Fe3O4. X-ray photoelectron spectroscopy study confirms the XRD findings. Raman measurements reveal identical spectra for all the films deposited at different substrate temperatures. We observe abrupt increase in the resistivity behavior of all the films around Verwey transition temperature (TV) (125 K-120 K) though the transition is broader in the film deposited at 350 °C. We observe that the optimized temperature for the growth of Fe3O4 film on Si is 450 °C. The electrical transport behavior follows Shklovskii and Efros variable range hopping type conduction mechanism below TV for the film deposited at 450 °C possibly due to the granular growth of the film.  相似文献   

4.
Thin stoichiometric aluminum oxide films were deposited using tris(diethylamino)aluminum precursor and water. Changes in aluminum oxide film and interfacial regions were studied after post deposition annealing under inert ambience at 600, 800 and 1000 °C using Fourier Transform InfraRed (FTIR) spectroscopy, X-ray Photoelectron Spectroscopy, and Scanning Transmission Electron Microscopy (STEM)/Electron Energy Loss spectroscopy (EELS) techniques. STEM/EELS analyses were also done on samples annealed in situ, i.e., inside the electron microscope at temperatures as high as 800 °C. Up to an annealing temperature of 600 °C, the atomic layer deposited alumina film was thermally stable and remained amorphous with no interfacial silica growth observed. After annealing at 800 °C for 5 min, the only change observed was a small increase in the interfacial layer thickness which was found to be mainly silicon oxide without any significant silicate content. Annealing at 1000 °C induced a significant increase in the interfacial layer thickness which consisted of a mixture of silicon oxide and aluminum silicate. The composition of the interfacial layer was found to change with depth, with silicate concentration decreasing with distance from the Si substrate. Also, the FTIR spectra exhibited strong absorption features due to Al-O stretching in condensed AlO6 octahedra which indicate crystallization of the alumina film after annealing at 1000 °C for 5 min.  相似文献   

5.
Large-grained and 7 μm thick CdTe film has been fabricated on top of Mo coated soda-lime glass substrate. As a new approach the dynamic recrystallization process (DRC) was used to form the structure of films. For the characterization of the structure and composition of the films a scanning electron microscopy (SEM), energy dispersive X-ray microanalysis (EDS) and X-ray diffraction (XRD) methods were used. The changes in the structure of films were studied in accordance with the process temperature, pressure and as-deposited film thickness. Significant changes in the CdTe film were observed after DRC of deposited films at the process temperatures between 450 °C and 550 °C. EDS quantitative analysis showed that during the recrystallization the Mo and CdTe films composition remained stable for all studied samples. The XRD results showed that the increase in the process temperature caused improvement in orientation of the films along direction of (111). The DRC temperature above 550 °C reduced the orientation again. The limits of the temperature and pressure in application of soda-lime glass in DRC were found and discussed.  相似文献   

6.
M.J. Chuang  C.H. Wen 《Thin solid films》2010,518(8):2290-1248
Structures and surface chemical composition of indium tin oxide (ITO) thin films prepared by long-throw radio-frequency magnetron sputtering technique have been investigated. The ITO films were deposited on glass substrates using a 20 cm target-to-substrate distance in a pure argon sputtering environment. X-ray diffraction results showed that an increase in substrate temperature resulted in ITO structure evolution from amorphous to polycrystalline. Field-emission scanning electron microscopy micrographs suggested that the ITO films were free of bombardment of energetic particles since the microstructures of the films exhibited a smaller grain size and no sub-grain boundary could be observed. The surface composition of the ITO films was characterized by X-ray photoelectron spectroscopy (XPS). Oxygen atoms in both amorphous and crystalline ITO structures were observed from O 1 s XPS spectra. However, the peak of the oxygen atoms in amorphous ITO phase could only be found in samples prepared at low substrate temperatures. Its relative peak area decreased drastically when substrate temperatures were larger than 200 °C. In addition, a composition analysis from the XPS results revealed that the films deposited at low substrate temperatures contained high concentration of oxygen at the film surfaces. The oxygen-rich surfaces can be attributed to hydrolysis reactions of indium oxides, especially when large amount of the amorphous ITO were developed near the film surfaces.  相似文献   

7.
Erbium films were grown on single crystal Si(111) substrates by electron beam vapor deposition. The microstructures of the erbium films were systematically investigated by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. Results indicate that the surface morphologies and microstructures of the erbium films with Si as substrates are susceptible to the substrate temperatures when the deposition rates are fixed. The pure erbium films with columnar grains were obtained at temperatures below 200 °C, but in the films grown at temperatures higher than 350 °C, some pinholes that are composed of erbium silicides were found. The pinholes have triangular shapes which is in accordance with the geometry of the underlying Si(111) substrate. The films grown at a substrate temperature equal or greater than 450 °C have cracks which would be formed due to the different shrinkage degree of erbium and silicon when the substrate temperature was cooled down to room temperature. The films grown at 200 °C show the (002) preferred orientation, which is consistent to the prediction by the theory of surface energy minimization. The deposition rate and deposition time are considered as factors to affect the reaction of the erbium film and the silicon substrate.  相似文献   

8.
This study investigates the interface formation between a magnesium oxide dielectric overlayer and an ultrathin SiO2 layer (∼ 0.3 nm) grown on the atomically clean p-type Si(111) surface in ultra high vacuum. Both soft X-ray synchrotron radiation based photoemission and conventional X-ray photoelectron spectroscopy have been used to characterise the evolution of the interface and monitor the change in the interfacial oxide thickness. As the MgO film grows, there is an increase in the intensity of the silicon oxide features indicating the growth of the interfacial oxide which saturates at a thickness of approximately 0.7 nm. Spectra acquired at the surface sensitive 130 eV photon energy, reveal the emergence of a chemically shifted component on the low binding energy side of the substrate peak which is attributed to atomic displacement of silicon atoms from the substrate to the interfacial oxide at room temperature. This evidence of atomic disruption at the high dielectric constant material (high-κ) and silicon interface would be expected to contribute to charge carrier scattering mechanisms in the silicon and could account for the generally observed mobility degradation in high-κ stacks. Thermal annealing studies of deposited MgO films show that dissociation begins to occur above 600 °C with desorption of Mg and the growth of a silicon oxide.  相似文献   

9.
Zinc oxide (ZnO) films have been prepared by thermal oxidation of vacuum deposited zinc (Zn) films onto glass substrate kept at room temperature (35 °C). The structural, electrical, optical and gas sensing properties of films annealed at 350 and 500 °C have been investigated. X-ray diffraction measurements indicate that the ZnO films oxidized at these temperatures are polycrystalline in nature with (101) as preferential crystallographic orientation. Practically no change in lattice parameters of ZnO films is observed when oxidation temperature is increased from 350 to 500 °C. Field emission scanning electron microscopy shows nanoparticles and nanowires at the surface of the ZnO films oxidized at 350 and 500 °C, respectively. At room temperature (35 °C), the film oxidized at 350 °C shows a gradual increase of response up to 96% for 2000 ppm exposure of ethanol, while film oxidized at 500 °C could detect a response of 99% for 500 ppm beyond which it saturates. An increase in the optical absorbance of the film has also been observed when ethanol concentration increases from 50 to 200 ppm beyond which no significant change is noticed even up to 2000 ppm.  相似文献   

10.
Y.Y. Kim  H.K. Cho  J.H. Kim  E.S. Jung 《Thin solid films》2008,516(16):5602-5606
We report the effect of growth temperature and annealing on microstructural, elemental and emission properties of as-grown and in-situ annealed MgZnO thin films, containing ∼ 10 at. % Mg, grown at high temperature by RF sputtering. Microstructural analysis carried out by TEM reveals formation of thin oxide layer with increased layer thickness on growth temperature, in the interface between Si substrate and MgZnO thin film. Irrespective of growth temperature, increase in Mg mole fraction with increase in thickness of MgZnO thin film is observed from EDX and AES spectroscopy, and a maximum of 14 at. % Mg is observed at 800 °C. The photoluminescence investigation shows blue shift of 104 meV in MgZnO film grown at 800 °C, compared to the film grown at 600 °C, which is due to the enhancement of the Mg incorporation at higher temperature. In addition, annealing at the growth temperature enhanced the intensity ratio of the UV/deep level emission and increased the grain size. Thermal treatment in a vacuum improved the emission efficiency and changed the origin of the point defects.  相似文献   

11.
Y.F. Ding  J.S. Chen  B.C. Lim  B. Liu 《Thin solid films》2009,517(8):2638-2647
FePt:C thin films were deposited on CrRu underlayers by DC magnetron co-sputtering. The effects of C content, FePt:C film thickness and substrate temperature on the microstructural and magnetic properties of the epitaxial FePt (001) films were studied. Experimental results showed that even with 30 vol.% C doping, the FePt films could keep a (001) preferred orientation at 350 °C. When a FePt:C film was very thin (< 5 nm), the film had a continuous microstructure instead of a granual structure with C diffused onto the film surface. With further increased film thickness, the film started to nucleate and formed a column microstructure over continuous FePt films. A strong exchange coupling in the FePt:C films was believed to be due to the presence of a thin continuous FePt layer attributed to the carbon diffusion during the initial stage of the FePt:C film growth. Despite the presence of a strong exchange coupling in the FePt:C (20 vol.% C) film, the SNR ratio of the FePt:C media was about 10 dB better than that of the pure FePt media. The epitaxial growth of the FePt:C films on the Pt layers was observed from high resolution TEM cross sectional images even for the films grown at about 200 °C. The TEM images did not show an obvious change in the morphology of the FePt:C films deposited at different temperatures (from 200 °C to 350 °C), though the ordering degree and coercivity of the films increased with increased substrate temperature.  相似文献   

12.
This paper describes amorphous silicon carbide (a-SiC) film as an alternative material to silicon nitride (SiN) and silicon oxide (SiO2) for the passivation layer of solar cells. We deposited the film on p-type silicon (100) wafers and glass substrates by RF magnetron sputtering using a SiC (99%) target. Structural and optical properties of the films were investigated according to the process temperature (room temperature, 300 °C, 400 °C, 500 °C and 600 °C). The structural properties were analyzed by Raman microscopy and XPS (X-ray Photoelectron Spectroscopy). The XPS showed that the content of SiC in the film is increased when the substrate temperature is higher. The optical properties of the films were examined by UV-visible spectroscopy and Ellipsometer. The optical characteristic measurement showed that the lowest refractive index of the film is 2.65. Also, using carrier lifetime measurement, we investigated the performance of SiC as the passivation layer. At the substrate temperature of 600 °C, we obtained a highest carrier lifetime of 7.5 μs.  相似文献   

13.
邵红红  徐涛  王晓静  邓进俊 《功能材料》2012,43(15):2095-2097
用射频磁控溅射法在单晶Si基体上制备了硅钼薄膜,对薄膜进行真空退火处理以及高温氧化实验,借助SEM和X射线衍射仪(XRD)等仪器对退火前后的薄膜以及高温氧化后的薄膜进行了分析。结果表明沉积态的硅钼薄膜为非晶态,高温真空退火使薄膜由非晶态转变为晶态,致密的复合氧化物是硅钼薄膜具有良好的抗氧化性能的主要原因。  相似文献   

14.
N.W. Khun 《Thin solid films》2009,517(17):4762-1544
Nitrogen doped amorphous carbon (a-C:N) thin films were deposited on p-Si substrates by DC magnetron sputtering at varying substrate temperature from room temperature (RT) to 300 °C. The bonding structure, surface morphology and adhesion strength of the a-C:N films were investigated by using X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, atomic force microscopy (AFM) and micro-scratch testing. The corrosion behavior of the a-C:N films was evaluated by potentiodynamic polarization test in a 0.6 M NaCl solution. The results indicated that the corrosion resistance of the films depended on the sp3-bonded cross-link structure that was significantly affected by the substrate temperature.  相似文献   

15.
Ru thin films were sequentially deposited onto TaN (5 nm) by plasma enhanced atomic layer deposition using Ru(EtCp)2 and NH3 as precursors. The effect of growth temperature on the electrical resistivity and morphology of the Ru films were studied. It was found that the Ru films can achieve a low resistivity of 14 µΩ cm and a low root-mean-square roughness at a growth temperature of 270 °C. The thickness of the underlying TaN film was found to affect the Ru film growth. The oxidation of the very thin TaN film was correlated with the island growth of Ru. Ex and in-situ X-ray diffraction was employed to verify the copper diffusion barrier properties of a Ru (3 nm)/TaN (5 nm) bi-layer structure.  相似文献   

16.
X.H. Ji  H.Y. Yang 《Thin solid films》2007,515(11):4619-4623
We report the structural and optical properties of InN films on Si(111) prepared by ion-beam-assisted filtered cathodic vacuum arc technique. X-ray diffraction and Raman spectroscopy measurements indicated that all the InN films were hexagonal crystalline InN. The InN films deposited at substrate temperature of 475 °C exhibited highly (0001) preferred orientation and texturing (cratered) surface morphology. The oxygen incorporated in the InN films was segregated in the form of amorphous indium oxide or oxynitride phases at the grain boundaries. Photoluminescence emission of ∼ 1.15 eV was observed at room temperature from the InN films.  相似文献   

17.
K.-F. Chiu 《Thin solid films》2007,515(11):4614-4618
Thin films of lithium cobalt oxides have been deposited by ionized magnetron sputter deposition with and without substrate heating. The technique uses a built-in radio frequency coil to generate an inductively coupled plasma (ICP) confined close to the substrate. The ICP plasma results in ion bombardment on the film surface, which serves as an extra energy input during film growth. Therefore, the film properties can be modified at a relatively lower temperature. The plasma irradiation induces variations of crystallography and morphology, as characterized by X-ray diffraction and scanning electron microscopy. The deposited films were tested as cathodes for lithium batteries, and the discharge curves were measured to compare the electrochemical properties of the deposited films. Applying suitable plasma irradiation, well crystallized LiCoO2 phase was obtained at 350 °C (substrate temperature), which was much lower than the temperature (700 °C-750 °C) for conventional post anneal process. The LiCoO2 films, fabricated under in-situ plasma irradiation and a relatively lower substrate temperature (350 °C), showed a discharge potential plateau at 4.3 V-3.8 V with a capacity of ∼ 110 mAh/g as discharged to 1.5 V.  相似文献   

18.
In the present paper we investigated the growth and electronic properties of Pt or Au clusters and formation of Pt-Au bimetallic clusters prepared “in-situ” on tungsten oxide surface by physical deposition under vacuum. The epitaxial tungsten oxide thin films were prepared by oxidation of W(110) single-crystal surface using a RF oxygen plasma source followed by thermal annealing. The chemical state of the system, the interaction between deposit and substrate and formation of Pt-Al alloy were investigated by photoelectron spectroscopy excited by synchrotron radiation (SRPES) and K;α X-ray source (XPS). We found that in contrary to Au clusters the Pt ones strongly interacts with the substrate. Deposition of both Pt and Au on the surface at the substrate temperature of 300 °C gave rise to the formation of bimetallic core-shell clusters. The detail structure of the bimetallic system depends on the order of deposited metals. These findings can explain some properties of Pt/WOx and Au/WOx as well as Pt-Au/WOx bimetallic catalysts and gas sensors.  相似文献   

19.
A series of nanogranular Ti90Cr10 thin films have been fabricated by pulsed-laser deposition on Si substrates at different temperatures. The crystal structure and mechanical properties of these films were investigated. The X-ray diffraction and transmission electron microscope images with selected area diffraction showed that the structure of as-prepared films is dependent on film thickness and deposition temperature. It was found that the Ti90Cr10 films consisted of fine hexagonal close packed microstructure with columnar grains, while body close-packed cubic structure of Cr films are composed of irregular grains, meanwhile, a chromium disilicide (CrSi2) layer formed in the interface between the substrate and Cr films which deposited at temperature of greater than 600 °C. The crystalline and columnar grains improved with an increase of the thickness of the films and an optimum microstructure is obtained under the present experimental condition of about 50 nm thickness and deposited temperature of 500 °C for Ti90Cr10 films. Deposited at 300 °C, the Ti90Cr10 films have hardness of 12.7 GPa and elastic modulus of 174.6 GPa. Improved to 600 °C the sample shows higher hardness of 13.1 GPa and higher elastic modulus of 183.2 GPa. Using Benjamin-Weaver model, adhesion shearing force can be calculated as 34.9 MPa for 300 °C Ti90Cr10 film while higher value of 44.4 MPa for higher temperature of 600 °C.  相似文献   

20.
Ga-doped zinc oxide (ZnO:Ga) transparent conductive films were deposited on glass substrates by DC reactive magnetron sputtering. The influence of substrate temperature on the structural, electrical, and optical properties of ZnO:Ga films was investigated. The X-ray diffraction (XRD) studies show that higher temperature helps to promote Ga substitution more easily. The film deposited at 350 °C has the optimal crystal quality. The morphology of the films is strongly related to the substrate temperature. The film deposited is dense and flat with a columnar structure in the cross-section morphology. The transmittance of the ZnO:Ga thin films is over 90%. The lowest resistivity of the ZnO:Ga film is 4.48×10−4 Ω cm, for a film which was deposited at the substrate temperature of 300 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号