首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In this study, indium-filled CoSb3 skutterudite is synthesized via encapsulated induction melting and subsequent annealing at 823 K for six days, and the crystal structure, lattice constant, filler position, phase homogeneity and stability were investigated. All of the In-filled CoSb3 samples were n-type conducting samples. The temperature dependence of the electrical resistivity showed InzCo4Sb12 is a highly degenerate semiconducting material. The thermal conductivity was reduced considerably by In filling. The highest thermoelectric figure of merit value was achieved when the In filling fraction is 0.25. It was found that the ZT of the In-filled CoSb3 (InzCo4Sb12) was higher than that of the In-substituted CoSb3 (Co3.75In0.25Sb12 and Co4Sb11.75In0.25). This is mainly due to the lower thermal conductivity and higher Seebeck coefficient.  相似文献   

2.
A series of samples have been fabricated through vacuum melting method followed by hot-pressing for Zn4Sb3−xTex (x = 0.02–0.08), XRD patterns indicated that all the samples were single-phased β-Zn4Sb3. Electrical conductivity and Seebeck coefficient were evaluated in the temperature range of 300–700 K, showing p-type conduction. The thermoelectric figure of merit (ZT) was increased with the increase of Te content. ZT values of 0.8 and 1.0 were obtained at 673 K for Zn4.08Sb3 and Zn4Sb2.92Te0.08, respectively.  相似文献   

3.
Nano-TiO2/Co4Sb11.7Te0.3 composites were prepared by mechanical alloying (MA) and cold isostatic pressing (CIP) process.The phase composition,microstructure,and thermoelectric properties were characterized.The diffraction spectra of all samples well corresponds to CoSb3 skutterudite diffraction plane.TiO2 agglomerates into irregular clusters.They locate at the grain boundaries or some are distributed on the surface of Co4Sb11.7Te0.3 particles.For composites with high TiO2 content (0.6% and 1.0% TiO2),the phonon scattering by TiO2 particle,pores,and small size grains can result in a remarkable reduction in thermal conductivity.The maximum value of ZT is 0.79 for sample with 0.6 wt.% TiO2 at 700 K,which is 11% higher than that of non-dispersed sample.  相似文献   

4.
Ni-doped CoSb3 skutterudites were prepared by encapsulated induction melting and their thermoelectric and electronic transport properties were investigated. The negative signs of Seebeck and Hal coefficients for all Ni-doped specimens revealed that Ni atoms successfully acted as n-type dopants by substituting Co atoms. The carrier concentration increased as the Ni doping content increased, and the Ni dopants could generate excess electrons. However, the carrier mobility decreased as the doping content increased, which indicates that the electron mean free path was reduced by the impurity scattering. The Seebeck coefficient and the electrical resistivity decreased as the carrier concentration increased, as the increase in carrier concentration by doping overcame the decrease in the carrier mobility by impurity scattering. The Seebeck coefficient showed a negative value at all temperatures examined and increased as the temperature increased. The temperature dependence of electrical resistivity suggested that Co1−xNixSb3 is a highly degenerate semiconducting material. Thermal conductivity was considerably reduced by Ni doping, and the lattice contribution was dominant in the Ni-doped CoSb3.  相似文献   

5.
p-type Sn-doped CoSb3-based skutterudite compounds have been prepared using melting-quenching-annealing method and spark plasma sintering technique. Sn atoms in our samples are completely soluted on Sb-site with a fixed charge state and non-magnetic feature, providing a better choice to ascertain the effect of element doping at the [Co4Sb12] framework on the electrical and thermal transport properties in p-type skutterudites. Doping Sn at the framework introduces additional ionized impurity scattering to affect the electron transport greatly. Similar electrical transport properties between Ce0.2Co4Sb11.2Sn0.8 and Co4Sb11Sn0.6Te0.4 suggest that Ce fillers contribute little to the valence band edge. Filling Ce into the voids and doping Sn at the framework introduce additional phonon resonant and point defect scattering mechanisms, thereby reducing lattice thermal conductivity remarkably. Moreover, our data suggest that combining these two effects is more effective to suppress lattice thermal conductivity through scattering broad range of phonons with different frequencies.  相似文献   

6.
P-type Bi2?xSbxTe3:Cum (x = 1.5–1.7 and m = 0.002–0.003) solid solutions were synthesized using encapsulated melting and were consolidated using hot pressing. The effects of Sb substitution and Cu doping on the charge transport and thermoelectric properties were examined. The lattice constants decreased with increasing Sb and Cu contents. As the amount of Sb substitution and Cu doping was increased, the electrical conductivity increased, and the Seebeck coefficient decreased owing to the increase in the carrier concentration. All specimens exhibited degenerate semiconductor characteristics and positive Hall and Seebeck coefficients, indicating p-type conduction. The increased Sb substitution caused a shift in the onset temperature of the intrinsic transition and bipolar conduction to higher temperatures. The electronic thermal conductivity increased with increasing Sb and Cu contents owing to the increase in the carrier concentration, while the lattice thermal conductivity slightly decreased due to alloy scattering. A maximum figure of merit, ZTmax = 1.25, was achieved at 373 K for Bi0.4Sb1.6Te3:Cu0.003.  相似文献   

7.
Ab-initio calculations of the resonant modes and frequencies for a number of possible fillers in p-type RFe3CoSb12 and RFe4Sb12 were carried out. The results indicate that, although the exact values of fillers’ resonant frequencies in p-type skutterudites are somewhat different from those in n-type Co-based skutterudites, the Einstein-like resonant modes of the fillers are similar to those in n-type materials. Experimentally, several pairs of the fillers were selected and double-filled p-type skutterudite compounds RxMyFe3CoSb12 (R, M = Ba, Ce, Nd, and Yb) were successfully synthesized. The reduction in the lattice thermal conductivity was realized by extending the range of resonant frequencies. As a result, enhanced ZT values above unity were achieved in these double-filled p-type skutterudites.  相似文献   

8.
Sn-filled (Fe, Co)Sb3 skutterudites of the form of SnyFe3Co5Sb24 (0≤y≤1.5) were synthesized by the mechanical alloying of elemental powders followed by vacuum hot pressing. The phase transformations that occur during both mechanical alloying and vacuum hot pressing were examined by X-ray diffraction. Single-phase Sn-filled skutterudite was successfully produced by vacuum hot pressing using as-milled powders without subsequent annealing. The thermoelectric properties of the hot-pressed specimens were evaluated as a function of temperature and tin content. The void filling of tin (up to y=1.0) in Fe3Co5Sb24 appeared to increase the thermoelectric figure of merit.  相似文献   

9.
Nanocomposite engineering has been proved effective in diverse regimes of material research to attain a performance beyond each constituent phase. In this work, Yb-filled CoSb3 (bulk matrix/host)-Bi0.4Sb1.6Te3 (secondary inclusion) thermoelectric nanocomposites have been synthesized via an ex situ process. Bi0.4Sb1.6Te3 inclusions are mainly distributed at the grain boundaries of Yb0.2Co4Sb12 matrix in the composites. In particular, Te diffuses in situ from Bi0.4Sb1.6Te3 through Yb0.2Co4Sb12 matrix during the hot pressing process. This, combined with the grain boundary effect, results in favorable changes in the carrier concentration, carrier mobility, electrical resistivity, Seebeck coefficient, and thermal conductivity. Such synergistic changes are notably absent in the stand-alone Te-doped Yb-filled CoSb3, suggesting the key role of diffusion and grain boundaries. As a result, a maximum ZT value of 0.96 has been attained for Yb0.2Co4Sb12-2 wt% Bi0.4Sb1.6Te3 at 650 K. The present work opens a new avenue towards high performance thermoelectric composites via controlled inter-constituent diffusion and grain boundary effect.  相似文献   

10.
Te-doped CoSb3 (CoSb3−yTey) skutterudites were prepared by hot pressing and their electronic transport properties examined. A single δ-phase was successfully obtained. The Seebeck and Hall coefficients confirmed that all the Te-doped CoSb3 showed n-type conduction. The Te atoms successfully acted as electron donors by substitution of the Sb atoms. The carrier concentration increased an order of 1020 cm−3 by Te doping, whereas the carrier mobility decreased as the doping content increased. The Seebeck coefficient and electrical resistivity decreased with an increase in the Te content. The doping considerably reduced the thermal conductivity due to electron-phonon scattering. The lattice contribution was dominant over the electronic contribution.  相似文献   

11.
D. Li  X.Y. Qin 《Intermetallics》2011,19(11):1651-1655
The transport and thermoelectric properties of Te-doped Zn4Sb3 compounds, Zn4(Sb1?xTex)3 (x = 0, 0.005 and 0.02), were investigated. The results showed that thermal conductivity of the Te-doped compounds were reduced remarkably as compared to that of Zn4Sb3 presumably due to enhanced impurity (dopant) scattering of phonons. Thermopower S was found to decrease with increase in Te content, which could be ascribed to the excess Zn in the doped compounds acting as p-type dopant that leads to an increase in the carrier concentration. Moreover, it was found that the β to α phase transition of Zn4Sb3 could be completely prohibited by Te doping. The figure of merit, ZT, for doped compounds was greater than the un-doped Zn4Sb3 for the temperature range investigated. In particular, the ZT of Zn4(Sb0.995Te0.005)3 reached a value of 1.08 at 680 K, which is 69% greater than that of the un-doped Zn4Sb3 obtained in this study.  相似文献   

12.
This paper is devoted to investigating the microstructure and thermoelectric properties of Yb-filled skutterudite Yb0.1Co4Sb12 under a cyclic thermal loading from room temperature to 773 K. The results indicate after 1000 cycles, the surface morphology changes dramatically, and clear grain boundaries appear on the surface of the sample. The grain sizes of the sample change little after 1000 cycles, and the main phase is still skutterudite; however, a trace amount of YbSb also exists. In addition, the electrical conductivity and thermal conductivity decrease distinctly after 1000 cycles, but the absolute value of the Seebeck coefficient increases a little. Consequently, the ZT value decreases slightly from 0.75 at 800 K before cycling to 0.69 after 1000 cycles. It indicates that the effect of the cyclic thermal loading on the ZT of the Yb0.1Co4Sb12 material is not distinct.  相似文献   

13.
Bi2Te3−xSex alloys are extensively used for thermoelectric cooling around room temperature, but, previous studies have reported peak thermoelectric efficiency of the material at higher temperature around 450 K. This study presents the casting followed by high energy ball milling and spark plasma sintering as a thriving methodology to produce efficient and well-built Bi2Te3−xSex material for the thermoelectric cooling around room temperature. In addition, changes in electrical and thermal transport properties brought up by amount of Se in the Bi2Te3−xSex material for this methodology are measured and discussed. Although Seebeck coefficient and electrical conductivity showed irregular trend, power factor, thermal conductivity and figure of merit ZT gradually decreased with the increase in amount of Se. A maximum ZT value of 0.875 at 323 K was obtained for x = 0.15 sample owing to its higher power factor. This value is 17% and 38% greater than for x = 0.3 and x = 0.6 samples respectively. At 323 K, herein reported ZT value of 0.875 is higher than the state of art n-type Bi2Te3 based thermoelectric materials produced by the time consuming and expensive methodologies.  相似文献   

14.
Skutterudites Fe0.2Co3.8Sb12?xTex (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) were synthesized by induction melting at 1273 K, followed by annealing at 923 K for 144 h. X-ray powder diffraction and electron microprobe analysis confirmed the presence of the skutterudite phase as the main phase. The temperature-dependent transport properties were measured for all the samples from 300 to 818 K. A positive Seebeck coefficient (holes are majority carriers) was obtained in Fe0.2Co3.8Sb12 in the whole temperature range. Thermally excited carriers changed from n-type to p-type in Fe0.2Co3.8Sb11.9Te0.1 at 570 K, while in all the other samples, Fe0.2Co3.8Sb12?xTex (x = 0.2, 0.3, 0.4, 0.5, 0.6) exhibited negative Seebeck coefficients in the entire temperature range measured. Whereas for the alloys up to x = 0.2 (Fe0.2Co3.8Sb11.8Te0.2) the electrical resistivity decreased by charge compensation, it increased for x > 0.2 with an increase in Te content as a result of an increase in the electron concentration. The thermal conductivity decreased with Te substitution owing to carrier–phonon scattering and point defect scattering. The maximum dimensionless thermoelectric figure of merit, ZT = 1.04 at 818 K, was obtained with an optimized Te content for Fe0.2Co3.8Sb11.5Te0.5 and a carrier concentration of ~n = 3.0 × 1020 cm?3 at room temperature. Thermal expansion (α = 8.8 × 10?6 K?1), as measured for Fe0.2Co3.8Sb11.5Te0.5, compared well with that of undoped Co4Sb12. A further increase in the thermoelectric figure of merit up to ZT = 1.3 at 820 K was achieved for Fe0.2Co3.8Sb11.5Te0.5, applying severe plastic deformation in terms of a high-pressure torsion process.  相似文献   

15.
D. Li  R.R. Sun  X.Y. Qin 《Intermetallics》2011,19(12):2002-2005
High performance (Bi2Te3)x(Sb2Te3)1?x bulk materials have been prepared by combining fusion technique with spark plasma sintering, and their thermoelectric properties have been investigated. With the increase of Bi2Te3 content, the electrical resistivity and Seebeck coefficient increase greatly and the thermal conductivity decreases signi?cantly, which lead to a great improvement in the thermoelectric ?gure of merit ZT. The maximum ZT value reaches 1.33 at 398 K for the composition of 20% Bi2Te3–80%Sb2Te3 with 3 wt% excess Te.  相似文献   

16.
While intensive work has been done on n-type Yb filled skutterudites in the past, very little is known about their p-type counterparts for potential applications as thermoelectric materials. In this paper, we report a systematic study of high temperature thermoelectric transport properties of p-type Yb-filled Fe-compensated skutterudites YbxFeyCo4-ySb12 with the aim to complement the knowledge base for the Yb-filled skutterudite family. The highest ZTmax = 0.6 was found in Yb0.6Fe2Co2Sb12 at 782 K. YbFe4Sb12 exhibits the second highest ZTmax = 0.57 at 780 K, which is much higher than the previous estimate of 0.4 for the same composition.  相似文献   

17.
Hot-pressed samples of the semi-conducting compound Zn4Sb3 with the stoichiometric composition were prepared and characterized by X-ray and microprobe analysis. Thermoelectric characterization was done through measurements of the electrical and thermal conductivities as well as the Seebeck coefficient between room temperature and 650 K. All samples had p-type conductivity. High thermoelectric figures of merit (ZT) were obtained between 450 and 650 K and a maximum of about 1.3 were obtained at a temperature of 650 K.  相似文献   

18.
Li-filled CoSb3, which is inaccessible under ambient pressure, was successfully synthesized with a high-pressure synthesis technique, demonstrating a fast and effective way to broaden elemental species that can be filled into voids of skutterudites. The optimized Li0.36Co4Sb12, with a greatly enhanced thermal power factor and much reduced thermal conductivity, has a ZT value of 1.3 at 700 K, the highest among all single elemental filled CoSb3 materials at this temperature. In addition, an instructive linear relationship between the Einstein temperatures of the distinct rattling fillers and their ionic radii is revealed, which as a reference can easily be applied to the multiple elemental filling strategy for selecting suitable filling elemental species to reduce the lattice thermal conductivity more effectively.  相似文献   

19.
Nanostructured skutterudite-related compound Fe0.25Ni0.25Co0.5Sb3 was synthesized by a solvothermal method using FeCl3, NiCl2, CoCl2, and SbCl3 as the precursors and NaBH4 as the reductant. The solvothermally synthesized powders consisted of fine granules with an average particle size of tens of nanometers. The bulk material was prepared by hot pressing the powders. Transport property measurements indicated a heavily doped semiconductor behavior with n-type conduction. The thermal conductivity is about 1.83 W·m−1·K−1 at room temperature and decreases to 1.57 W·m−1·K−1 at 673 K. The low thermal conductivity is attributed to small grain size and high porosity. A maximum dimensionless figure of merit of 0.15 is obtained at 673 K.  相似文献   

20.
We have studied the substitution of antimony by tin and tellurium in n-type skutterudites CoSb2.8Sn x Te0.2?x . The samples were made by ball milling ingots and hot pressing the ball-milled nanopowder. Rather than filling the cage of the structure, we aimed to use disorder in pnictogen rings by elemental substitution of Sb by Sn and Te. In skutterudite CoSb3, the dominant heat-carrying phonons are associated with the vibrational modes of the Sb-rings; disorder in the rings can be an effective way to suppress the thermal transport. By suitably tuning the contents of Sn and Te in the skutterudites, we have suppressed the thermal conductivity and achieved a power factor of ~42 μW cm?1 K?2 at 530°C. A peak thermoelectric figure of merit (ZT) reaches ~1.1 at 530°C for CoSb2.8Sn0.005Te0.195. This ZT value is comparable with that of some of the single-filled skutterudites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号