首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND: There are disparate reports concerning the presence of surfactant proteins in the airways of lung. The recent finding of SP-A in tracheobronchial epithelium and submucosal glands in lungs from second trimester humans has renewed interest in potential new functions of surfactant in lung biology. METHODS: In situ hybridization studies were done to determine the distribution of SP-A, SP-B, and SP-C in baboon lung specimens from 60, 90, 120, 140, 160, and 180 (term) days of gestation and adults. Lungs from gestation controls were obtained at the time of hysterotomy and adult lungs at necropsy. Riboprobes used for in situ hybridization contained the entire coding regions for human SP-A, SP-B, and SP-C. RESULTS: At 60 days, SP-C mRNA expression was evident in focal portions of primitive tubular epithelium but not bronchi. This distal pattern of SP-C mRNA expression persisted and was present in some epithelial cells of respiratory bronchioles at term. At 90 days, SP-A mRNA expression was present in the epithelium of trachea and large bronchi. SP-B mRNA expression was found in small bronchi, bronchioles, and distal tubular epithelium at 120 days of gestation. SP-A mRNA bronchiolar localization became evident at 140 days of gestation and alveolar type 2 cellular expression at 160 days of gestation. Abrupt transitions of surfactant protein expression were identified (e.g., SP-A mRNA-positive cells in the epithelium of large bronchi with adjoining SP-B mRNA expression in small bronchi and bronchioles). CONCLUSIONS: Findings in the baboon indicate that there are well-delineated sites of surfactant protein mRNA expression in bronchial and bronchiolar epithelia. mRNA expressions of SP-A and SP-B are present in both bronchial and bronchiolar epithelium but at different sites, whereas SP-C expression is seen in loci of epithelial cells in respiratory bronchioles.  相似文献   

2.
3.
4.
Explants of embryonic lung are often used to characterize lung growth, bronchial tree pattern, and cell differentiation. Most investigators culture lungs for 3-7 days in defined media lacking, e.g., added growth factors or hormones. If growth and differentiation are comparable to that in vivo, these cultures show considerable promise for identifying developmental regulatory molecules and target genes, and for elucidating molecular responses. We used in situ hybridization and RT-PCR to compare times and sites of expression of mRNAs of six epithelial genes in cultured and uncultured fetal rat lungs. These genes, expressed in distal lung of adult rats, are surfactant proteins (SP) A, B, and C; LAR, a receptor-type tyrosine phosphatase; Clara cell secretory protein (CC10, CCSP); and T1alpha. SP-A, SF-B, LAR, and CC10 are expressed by both Clara and Type II cells in adult animals. SP-C and T1alpha are unique markers for Type II and Type I cells, respectively. SP-C, LAR, and T1alpha are expressed before the lung is explanted (Day 13.5); SP-A, -B, and CC10 mRNAs are first detected later. The onset of expression is similar in vivo and in vitro. Although the patterns of expression differ for each mRNA, their sites of expression in culture match those in vivo relative to the bronchial tree. The explanted embryonic lung appears to be an excellent experimental model.  相似文献   

5.
In the present study, we characterized surfactant protein (SP)-A messenger RNA (mRNA) in mid-trimester human fetal trachea and bronchi. SP-A protein was localized by immunocytochemistry to scattered epithelial cells in the airway surface epithelium and in submucosal glands of the fetal trachea and bronchi. SP-A mRNA (2.2 kb) was detected by Northern blot analysis in human fetal trachea, as well as in primary and more distal bronchi. The levels of detectable SP-A mRNA were highest in the upper airways and were decreased in smaller bronchi in comparison. SP-A mRNA was barely detectable in the distal fetal lung tissue. In contrast, SP-A mRNA was abundant in cultured explants of distal human fetal lung tissue. SP-A1 and SP-A2 mRNA were detected by primer extension analysis in adult human lung tissue and in cultured human fetal lung explants. Only SP-A2 mRNA was detected in RNA isolated from human fetal trachea and bronchi. SP-A mRNA was localized by in situ hybridization in the fetal trachea and bronchi in scattered cells in the surface epithelium and, most prominently, in submucosal glands. Our results suggest that SP-A2, and not SP-A1, is produced in the human fetal tracheal and bronchial epithelium and in submucosal glands.  相似文献   

6.
7.
Pulmonary surfactant is a complex mixture of lipids and proteins that functions to keep alveoli from collapsing at the end of expiration. Dipalmitoylphosphatidylcholine has been identified as the most important component for lowering surface tension at the air-liquid interface. Hydrophobic surfactant apoproteins, SP-B and SP-C, play essential roles in the biophysical functions of the surfactant phospholipids. Hydrophilic surfactant apoproteins (SP-A and SP-D) that are members of C-type lectin superfamily, interact with phospholipids and glycolipids and modulate host defense functions in the lung. SP-A also plays an important role in regulating phospholipid homeostasis in the alveolar spaces. Recent advances in genetics and molecular biology have clarified the structure-function relationship of surfactant apoproteins.  相似文献   

8.
Genetics of the hydrophilic surfactant proteins A and D   总被引:1,自引:0,他引:1  
The use of candidate genes has increased the ability to identify genetic factors involved in diseases with complex and multifactorial etiology. The surfactant proteins (SP) A and D are involved in host defense and inflammatory processes of the lung, which are often components of pulmonary disease. Therefore, the SP-A and SP-D genes make particularly good candidates to study factors contributing to pulmonary disease etiopathogenesis. Moreover, SP-A also plays a role in the surface tension lowering abilities of pulmonary surfactant, which is essential for normal lung function. Although genetic variability at the SP-D locus may exist among humans, allelic variants have not yet been characterized. On the other hand, the human SP-A genes (SP-A1 and SP-A2) are characterized by genetically dependent splice variants at the 5' untranslated region and allelic variants. The polymorphisms that give rise to SP-A1 and SP-A2 alleles are contained within coding regions, potentially having an effect on protein function. There appears to be a correlation between SP-A genotype and SP-A mRNA content. Furthermore, one SP-A2 allele (1A0) shown to associate with low SP-A mRNA levels is found with higher frequency in a subgroup with respiratory distress syndrome. The evidence gathered thus far indicates that SP-A, possibly by interacting with other surfactant components, may play a role (e.g. be a susceptibility factor) in the development of respiratory disease.  相似文献   

9.
Mice lacking surfactant protein A (SP-A) mRNA and protein in vivo were generated using gene targeting techniques. SP-A (-/-) mice have normal levels of SP-B, SP-C and SP-D mRNA and protein and survive and breed normally in vivarium conditions. Phospholipid composition, secretion and clearance, and incorporation of phospholipid precursors are normal in the SP-A (-/-) mice. Lungs of SP-A (-/-) mice have markedly decreased tubular myelin figures and clear Group B streptococci and Pseudomonas aeruginosa less efficiently than SP-A wild type mice. These studies of SP-A (-/-) mice demonstrate that SP-A has an important role in the innate immune system of the lung in vivo.  相似文献   

10.
Surfactant protein A (SP-A) is a highly ordered, oligomeric glycoprotein that is secreted into the airspaces of the lung by the pulmonary epithelium. The in vitro activities of protein suggest diverse roles in pulmonary host defense and surfactant homeostasis, structure and surface activity. Functional mapping of SP-A using directed mutagenesis has identified domains which interact with surfactant phospholipids, alveolar type II cells and microbes. Recently developed genetically manipulated animal models are beginning to clarify the critical physiological roles for SP-A in the normal lung, and in the pathophysiology of pulmonary disease.  相似文献   

11.
Pulmonary surfactant protein A (SP-A) is synthesized by type II cells and stored intracellularly in secretory granules (lamellar bodies) together with surfactant lipids and hydrophobic surfactant proteins B and C (SP-B and SP-C). We asked whether the progressive decrease in pH along the exocytic pathway could influence the secondary structure and lipid binding and aggregation properties of porcine SP-A. Conformational analysis from CD spectra of SP-A at various pH values indicated that the percentage of alpha-helix progressively decreased and that of beta-sheet increased as the pH was reduced. The protein underwent a marked self-aggregation at mildly acidic pH in the presence of Ca2+, conditions thought to resemble those existing in the trans-Golgi network. Protein aggregation was greater as the pH was reduced. We also found that both neutral and acidic vesicles either with or without SP-B or SP-C bound to SP-A at acidic pH as demonstrated by co-migration during centrifugation. However, the binding of acidic but not neutral vesicles to SP-A led to 1) a striking change in the CD spectra of the protein, which was interpreted as a decrease of the level of SP-A self-aggregation, and 2) a protection of the protein from endoproteinase Glu-C degradation at pH 4.5. SP-A massively aggregated acidic vesicles but poorly aggregated neutral vesicles at acidic pH. Aggregation of dipalmitoylphosphatidylcholine (DPPC) vesicles either with or without SP-B and/or SP-C strongly depended on pH, being progressively decreased as the pH was reduced and markedly increased when pH was shifted back to 7.0. At the pH of lamellar bodies, SP-A-induced aggregation of DPPC vesicles containing SP-B or a mixture of SP-B and SP-C was very low, although SP-A bound to these vesicles. These results indicate that 1) DPPC binding and DPPC aggregation are different phenomena that probably have different SP-A structural requirements and 2) aggregation of membranes induced by SP-A at acidic pH is critically dependent on the presence of acidic phospholipids, which affect protein structure, probably preventing the formation of large aggregates of protein.  相似文献   

12.
13.
The hydrophobic surfactant protein C (SP-C) is known to modulate the biophysical properties of surfactant phospholipid. Although SP-C mRNA has been demonstrated in human fetal lung, there is limited information regarding developmental expression and processing of proSP-C protein. Two epitope-specific human proSP-C antisera, anti-hCPROSP-C (His59-Ser72) and anti-hCTERMSP-C (Gly162-Gly175), were generated to complement previously produced anti-NPROSP-C (Met10-Gln23) for the study of proSP-C expression in human fetal lung. Western blotting and immunocytochemistry detected expression of proSP-C protein by 12-16 wk of gestation. ProSP-C immunoreactivity of preculture lung, limited to expression of proSP-C21 in airway epithelial cells, was markedly enhanced by culture of lung explants in dexamethasone. To examine synthesis of proSP-C, homogenates from explants were labeled with 35S-Met/Cys for 0.5-4 h. Immunoprecipitation with anti-NPROSP-C detected 35S-proSP-C21 by 30 min and, after 2 h of labeling, there was a 15-fold increase in 35S-proSP-C21 in dexamethasone-treated lungs versus controls. Synthesis of proSP-C21 was followed by the appearance of a 24-kD form and smaller processing intermediates including 6-10-kD forms. Posttranslational processing of proSP-C21 was not observed in control explants. SP-C(6-10) were not recognized by either anti-CPROSP-C or anti-hCTERMSP-C. These results indicate that low level expression of proSP-C protein first occurs in epithelial cells early in the second trimester and that expression can be enhanced by dexamethasone. Initial posttranslational processing of human proSP-C involves modification of proSP-C21 to SP-C24 and subsequent proteolysis of C-terminal propeptide domains. We speculate that absence of low Mr intermediates in unstimulated second trimester fetal lung tissue reflects developmental and glucocorticoid dependent regulation of proSP-C21 synthesis and posttranslational processing.  相似文献   

14.
Surfactant convertase is required for conversion of heavy density (H) natural surfactant to light density (L) subtype during cycling in vitro, a technique that reproduces surfactant metabolism. To study mechanisms of H to L conversion, we prepared liposomes of dipalmitoylphosphatidylcholine (DPPC) and phosphatidylglycerol (PG), or the phospholipids (PL) in combination with either surfactant protein A (SP-A), surfactant protein B (SP-B), or both SP-A and SP-B. Phospholipids alone showed time-dependent conversion from heavy to light subtype on cycling in the absence of convertase, which was decreased by adding SP-B, but not SP-A, to phospholipids (p < 0.01 for PL+SP-B, or PL+SP-A+SP-B vs. PL, or PL+SP-A). The ultrastructure, surface activity, buoyant density, and L subtype generation on cycling PL+SP-A+SP-B with partially purified convertase or with phospholipase D were similar to those of natural TM. In conclusion, a reconstituted surfactant mimics the behavior of natural surfactant on cycling, and reveals that interaction of SP-B with phospholipids decreases L subtype generation. In addition, esterase/ phospholipase D activity is required for conversion of heavy to light subtype on cycling.  相似文献   

15.
Surface tension-time adsorption isotherms were measured at 37 degrees C for calf lung surfactant extract (CLSE) and subfractions of its constituents: the complete mix of surfactant phospholipids (PPL), phospholipids depleted in anionic phospholipids (mPPL), hydrophobic surfactant proteins plus phospholipids (SP&PL, SP&mPL), and neutral lipids plus phospholipids (N&PL). Adsorption experiments were done using a static bubble surfactometer where diffusion resistance was present, and in a Teflon dish where diffusion was minimized by subphase stirring. The contribution of diffusion to bubble adsorption measurements decreased as phospholipid concentration increased, and was small at 0.25 mM phospholipid. At this phospholipid concentration, PPL, mPPL, and N&PL all adsorbed more rapidly and to lower final surface tensions than dipalmitoyl phosphatidylcholine (DPPC) on the bubble. However, none of these phospholipid mixtures adsorbed to surface tensions below 46 mN/m after 20 min, behavior that was significantly worse than CLSE, SP&PL, and SP&mPL which additionally contained hydrophobic SP. Both CLSE and SP&PL rapidly adsorbed to surface tensions below 25 mN/m at 0.25 mM phospholipid concentration on the bubble, as did SP&mPL at a somewhat reduced rate. Further experiments defining the influence of hydrophobic protein content showed that addition of even 0.13% SP (by wt) to PPL improved adsorption substantially, and that mixtures of PPL combined with 1% SP had adsorption very similar to CLSE. Mixtures of SP combined with mPPL had faster adsorption than corresponding mixtures of SP:DPPC, and neither fully matched the adsorption rates of CLSE and SP&PL even at high SP levels (4% in SP:mPPL and 5.2% in SP:DPPC). These results demonstrate that although the secondary zwitterionic and anionic phospholipids and neutral lipids in lung surfactant enhance adsorption relative to DPPC, the hydrophobic SP have a much more pronounced effect in promoting the rapid entry of pulmonary surfactant into the air-water interface.  相似文献   

16.
In the mixture of lipids and proteins which comprise pulmonary surfactant, the dominant protein by mass is surfactant protein A (SP-A), a hydrophilic glycoprotein. SP-A forms octadecamers that interact with phospholipid bilayer surfaces in the presence of calcium. Deuterium NMR was used to characterize the perturbation by SP-A, in the presence of 5 mM Ca(2+), of dipalmitoyl phosphatidylcholine (DPPC) properties in DPPC/egg-PG (7:3) bilayers. Effects of SP-A were uniformly distributed over the observed DPPC population. SP-A reduced DPPC chain orientational order significantly in the gel phase but only slightly in the liquid-crystalline phase. Quadrupole echo decay times for DPPC chain deuterons were sensitive to SP-A in the liquid-crystalline mixture but not in the gel phase. SP-A reduced quadrupole splittings of DPPC choline beta-deuterons but had little effect on choline alpha-deuteron splittings. The observed effects of SP-A on DPPC/egg-PG bilayer properties differ from those of the hydrophobic surfactant proteins SP-B and SP-C. This is consistent with the expectation that SP-A interacts primarily at bilayer surfaces.  相似文献   

17.
Forty-three patients with nonimmunologic hydrops fetalis (NIHF), including 32 patients (74%) with hypoplastic lung, were immunohistochemically examined for the expression of surfactant apolipoproteins (SPs), using anti-gamma G immunoglobulins against human SP-A with a molecular weight (MW) of 35 K and SP-B with a MW of 5 K compared with that in 59 patients in a control group and 45 patients with hypoplastic lung induced by causes other than NIHF. In the control group, SP-A was expressed in the lungs from 23 gestational weeks and became more numerous and intense in alveolar type II cells after 31 gestational weeks, whereas SP-B began to be expressed from 20 gestational weeks, and almost all patients showed a diffuse positivity after 26 gestational weeks. In the NIHF group, SP-A expression was generally weak, even after 31 gestation weeks. Moreover, most of the patients showing a weak expression of SP-A were also associated with hypoplastic lung and had a clinical history of persistent intrauterine pleural effusion of more than 2 weeks. Conversely, the immunoreactivity of SP-B was well preserved in NIHF cases either with or without hypoplastic lung. These results suggest that in the NIHF lung, there is a possible delay in the functional maturation or development of SP-A synthesis by alveolar type II cells, and this retardation of the functional maturation in type II cells also participates in the postnatal respiratory insufficiency in NIHF.  相似文献   

18.
Alveolar proteinosis (AP) is an idiopathic condition characterized by excess alveolar surfactant. Although the surfactant proteins (SP) are known to be aberrant, little is known of their variation between patients or their abundance relative to the lipids. We have examined surfactant composition in lavage fluid from 16 normal subjects and 13 patients with AP, one of whom was lavaged on 11 occasions over approximately 13 mo. In this patient we have examined composition on each occasion and in each sequential lavage aliquot. Composition was constant between right and left lung, but it differed markedly between patients. The cholesterol/disaturated phospholipid ratios (CHOL/DSP) were invariably elevated, on average by approximately 7-fold, whereas the SP-A/DSP and SP-B/DSP ratios were generally elevated, in some cases by as much as approximately 40- and approximately 100-fold, respectively. Although AP lavage generally contained more non-thiol-dependent SP-A aggregates and low Mr isoforms, the two-dimensional immunochemical staining patterns varied between patients and right and left lung. In the patient lavaged on multiple occasions, the SP-A/DSP and SP-B/DSP ratios progressively decreased as the patient's condition resolved. Because the SP-B/SP-A ratio was normal in all cases, we suggest that structural changes to the proteins occurred secondarily and that caution must be used in comparing functional data derived using SP-A obtained from patients with AP.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号