首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We present a high-functionality photonic integrated circuit that performs field-modulated wavelength conversion. This device incorporates an on-chip sampled grating distributed Bragg reflector laser for wide tunability. Wavelength conversion is accomplished using a preamplified semiconductor optical amplifier photodiode receiver interconnected with a traveling-wave modulator to form a high-speed optical gate. This paper discusses the design and performance of this device, as well as its potential for optical packet switching applications. Error-free wavelength conversion is demonstrated at 40 Gb/s with 1–3 dB power penalty compared with back-to-back transmission over 22 nm of input and output tuning. Output extinction in all cases is greater than 9 dB, and conversion efficiency ranges from $-$2 to $-$ 6 dB over the tuning range. This device additionally demonstrates the capability for external 10 Gb/s modulation, which can be used for optical label encoding.   相似文献   

2.
The first field experiment of virtual grouped-wavelength-path switching is successfully demonstrated by using polarization-independent multichannel wavelength conversion in a quasi-phase-matched lithium niobate waveguide and an 8/spl times/8 matrix switch. Contention resolution functionality is confirmed by using wavebands composed of 25GHz spaced, 8- or 64-ch, 10 Gb/s wavelength division multiplexing signals, transmitted through field-installed fibers in Japan Gigabit Network II optical test bed.  相似文献   

3.
Traditional optical-electronic-optical (o-e-o) conversion in today's optical networks requires cascading separately packaged electronic and optoelectronic chips and propagating high-speed electrical signals through and between these discrete modules. This increases the packaging and component costs, size, power consumption, and heat dissipation. As a remedy, we introduce a novel, chip-scale photonic switching architecture that operates by confining high-speed electrical signals in a compact optoelectronic chip and provides multiple network functions on such a single chip. This new technology features low optical and electrical power consumption, small installation space, high-speed operation, two-dimensional scalability, and remote electrical configurability. We present both theoretical and experimental discussion of our monolithically integrated photonic switches that incorporate quantum-well waveguide modulators directly driven by on-chip surface-illuminated photodetectors. These switches can be conveniently arrayed two-dimensionally on a single chip to realize a number of network functions. Of those, we have experimentally demonstrated arbitrary wavelength conversion across 45 nm and dual-wavelength broadcasting over 20 nm, both spanning the telecommunication center band (1530-1565 nm) at switching speeds up to 2.5 Gb/s. Our theoretical calculations predict the capability of achieving optical switching at rates in excess of 10 Gb/s using milliwatt-level optical and electrical switching powers.  相似文献   

4.
A highly compact integrated optical switch is proposed and demonstrated for broadband optical switching applications. Routing of 8 /spl times/ 10 Gb/s data channels is demonstrated using a low-cost 1250-Mb/s control scheme. The advantages of lossless operation, broad optical bandwidth, and nanosecond switching times are leveraged. Multichannel wavelength is exploited for reduced latency, enhanced capacity, and functionality, while retaining compatibility with existing off-the-shelf electronics and transceiver technology. The requirements for optical header processing, wavelength translation, and optical buffering are avoided. Low-penalty multiwavelength transmission is demonstrated for a highly compact sub-mm/sup 2/ amplifying 2 /spl times/ 2 switch. Pattern dependent gain and amplified spontaneous emission are minimized to facilitate 0.0-0.4 dB penalty. Mitigation techniques compatible with the architecture are deployed to reduce the penalty under adverse operating conditions. Control schemes are proposed and demonstrated to facilitate 8 /spl times/ 10 Gb/s optically switched networking.  相似文献   

5.
This work assesses the prospects for high-speed all-optical wavelength conversion using the simple optical interaction with the gain in semiconductor optical amplifiers (SOAs) via the interband carrier recombination. Operation and design guidelines for conversion speeds above 10 Gb/s are described and the various tradeoffs are discussed. Experiments at bit rates up to 40 Gb/s are presented for both cross-gain modulation (XGM) and cross-phase modulation (XPM) in SOAs demonstrating the high-speed capability of these techniques  相似文献   

6.
An optical parametric amplified (OPA) fiber switch is described in this paper. This device switches input signals without shifting the wavelength by changing the polarization state of the signal using optical parametric amplification. The OPA fiber switch features ultra-broadband, highly efficient switching with a high contrast ratio. We experimentally test the prototype of the OPA fiber switch, which uses a highly nonlinear fiber. Optical demultiplexing of 160 Gb/s differential phase-shift keying (DPSK) signals is demonstrated in the whole C-band and shows that it provides almost penalty-free optical detection. The application of amplitude noise suppression with the OPA fiber switch by using parametric gain saturation is then proposed and demonstrated for a 160 Gb/s DPSK signal. When it is set to an amplitude-limiting condition, the OPA fiber switch successfully increases the optical signal-to-noise ratio by 4 dB and effectively suppresses the phase deterioration in 160 Gb/s DPSK transmission by increasing the system margin by more than 5 dB.  相似文献   

7.
Four-wave mixing (FWM) in semiconductor optical amplifiers is an attractive mechanism for wavelength conversion in wavelength-division multiplexed (WDM) systems since it provides modulation format and bit rate transparency over wide tuning ranges. A series of systems experiments evaluating several aspects of the performance of these devices at bit rates of 2.5 and 10 Gb/s are presented. Included are single-channel conversion over 18 nm of shift at 10 Gb/s, multichannel conversion, and cascaded conversions. In addition time resolved spectral analysis of wavelength conversion is presented  相似文献   

8.
The soliton switching performance of the nonlinear optical loop mirror (NOLM) with inserted fiber Bragg grating is examined numerically in this paper. The relationships between various grating designs to the self-switching characteristics of the device are presented, including cases where low switching powers and rapid switching transitions are observed. Particular attention is paid to the bandpass nonlinear switching behavior of the NOLM, introduced with the inclusion of the grating. This analysis is extended to consider a novel cascaded loop configuration, in which the gratings in each loop are tuned to a different wavelength. A three-channel simulation of a two-loop cascade is presented with a discussion on the suitability of the NOLM device to wavelength-division-multiplexing (WDM) applications  相似文献   

9.
Ultrahigh nonlinear tapered fiber and planar rib Chalcogenide waveguides have been developed to enable highspeed all-optical signal processing in compact, low-loss optical devices through the use of four-wave mixing (FWM) and cross-phase modulation (XPM) via the ultra fast Kerr effect. Tapering a commercial As2Se3 fiber is shown to reduce its effective core area and enhance the Kerr nonlinearity thereby enabling XPM wavelength conversion of a 40 Gb/s signal in a shorter 16-cm length device that allows a broader wavelength tuning range due to its smaller net chromatic dispersion. Progress toward photonic chip-scale devices is shown by fabricating As2S3 planar rib waveguides exhibiting nonlinearity up to 2080 W-1ldr km-1 and losses as low as 0.05 dB/cm. The material's high refractive index, ensuring more robust confinement of the optical mode, permits a more compact serpentine-shaped rib waveguide of 22.5 cm length on a 7-cm- size chip, which is successfully applied to broadband wavelength conversion of 40-80 Gb/s signals by XPM. A shorter 5-cm length planar waveguide proves most effective for all-optical time-division demultiplexing of a 160 Gb/s signal by FWM and analysis shows its length is near optimum for maximizing FWM in consideration of its dispersion and loss.  相似文献   

10.
We experimentally demonstrate the use of a dispersion decreasing fiber (DDF)-based nonlinear optical loop mirror (NOLM) for the generation of wavelength tunable soliton-like pulses at a repetition rate of 10 GHz. We compress /spl sim/12-ps Gaussian pulses from an electro-absorption modulator (EAM) (followed by 125 m of DCF for preliminary linear dispersion compensation) into 3-ps pedestal-free pulses using both high-order soliton compression and nonlinear switching effects within an 8.5-km DDF-based loop mirror. The output pulses from the DDF-based NOLM show considerable pedestal reduction compared to those obtained by directly compressing the EAM seed pulses via a single passage through the DDF. Wavelength tuning of the compressed pulses over a /spl sim/15-nm bandwidth (from 1541 to 1556 nm) is demonstrated without a significant increase in pulse duration or degradation in pulse quality.  相似文献   

11.
This paper describes the design and demonstration of advanced 40-Gb/s return-to-zero (RZ) tunable all-optical wavelength converter technologies for use in packet-switched optical networks. The device designs are based on monolithic integration of a delayed interference Mach-Zehnder interferometer (MZI) semiconductor optical amplifier (SOA) wavelength converter with a sampled-grating distributed Bragg reflector tunable laser and an on-chip waveguide delay. Experimental results are presented demonstrating error-free wavelength conversion with 1-dB power penalty at 40-Gb/s data rates. By incorporating label modulation functionality on-chip along with a fast tunable 40-Gb/s wavelength converter, fully monolithic packet-forwarding chips are realized that are capable of simultaneous error-free wavelength conversion of 40-Gb/s payloads, remodulation of 10-Gb/s packet headers, and data routing through fast wavelength switching  相似文献   

12.
We present an all-optical wavelength converter that can operate at a very-high-switching rate with simultaneous reshaping, retiming, and regenerating (3R) capabilities based on nonlinear interactions between dispersion-managed (DM) (3+1)-dimensional optical solitons (light bullets). Numerical simulations have been performed to demonstrate the generation of the DM light bullets and the spatial dragging interaction between solitons with different colors for ultrafast wavelength conversion application. This all-optical 3R wavelength converter has a very compact size of 100 mum times 100 mum times 1 mm, and is able to convert information at an ultrahigh speed of over 1 Tb/s between wavelength channels of 50 nm apart. Such an ultrafast all-optical wavelength converter has potential applications in future optical time-division multiplexing (OTDM) and wavelength-division multiplexing (WDM) combined communication networks that require both the ultrafast switching speed due to the large bandwidth within each wavelength channel and the wavelength conversion function for exchanging information between different wavelength bands or spatial switching within the same wavelength bands.  相似文献   

13.
We demonstrate an eight-channel wavelength division multiplexing (WDM) modulator module that monolithically integrates arrayed waveguide gratings and semiconductor optical amplifiers and electroabsorption optical modulators arrays. The compact module can generate individual optical signals for each WDM channel with low optical and electrical crosstalk. We show two configurations for the narrow channel spacing of 25 GHz and high throughput of beyond 80 Gb/s. Combining this WDM modulator with a multi-wavelength light source is a promising approach to creating a compact WDM optical transmitter.  相似文献   

14.
We propose a low-crosstalk multichannel wavelength conversion scheme based on a parametric process. Simultaneous wavelength conversion of 25 GHz spaced 103 channel$,times,$10 Gb/s (1.03 Tb/s) wavelength-division multiplexing signals with an 8- and 4-nm guard band is successfully demonstrated by using a quasi-phase-matched lithium niobate waveguide. The method is evaluated both theoretically and experimentally.  相似文献   

15.
We report on two novel approaches to improve the differential quantum efficiency (DQE) of widely tunable 1.55-/spl mu/m lasers: the bipolar cascade sampled grating distributed Bragg reflector (BC-SGDBR) laser and the gain-levered SGDBR (GL-SGDBR) laser. Each is fabricated on a robust InGaAsP/InP photonic integrated circuit platform. The lasers demonstrate improved direct modulation performance over conventional SGDBR lasers. The BC-SGDBR laser was also monolithically integrated with a semiconductor optical amplifier and photodetector receiver in order to perform wavelength conversion. Error free wavelength conversion at 2.5 Gb/s and improvements in conversion efficiency are demonstrated.  相似文献   

16.
The development of wavelength-division multiplexing (WDM) all-optical transport networks is an interesting solution to increase the capacity of long-haul transmission systems and to solve the route-exhaust problems of metropolitan networks, driving down the cost of that traffic. Routing can be achieved using a transparent device able to select and interchange wavelengths, such as an all-optical wavelength converter. In this paper, an optical transport network over an embedded link located between Rome and Pomezia in Italy is emulated. The transmission has been realized along a WDM, 5/spl times/100 km long, dispersion managed link at 40 Gb/s. The in-line rerouting process has been controlled by means of an all-optical wavelength converter realized with a periodically poled lithium niobate waveguide. Moreover, a polarization-independent scheme for the converter has been exploited to allow the in-line signal processing. This scheme is based on the counterpropagation of TE and TM signal components along the same guide and results extremely compact. In this paper it is demonstrated that wavelength conversion and rerouting add no penalty with respect to the simple transmission along the embedded cable. This result seems to be another step toward the feasibility of true all-optical networks.  相似文献   

17.
We carried out the growth of highly strained GaInAs-GaAs quantum wells (QWs) on a patterned substrate for extending emission wavelength on a GaAs substrate. We examined the shift of photoluminescence wavelength of the QWs and showed a large wavelength shift due to the spatial modulation in well thickness and indium composition. We demonstrated a single-mode multiple-wavelength vertical-cavity surface-emitting laser (VCSEL) array on a patterned GaAs substrate covering a new wavelength window of 1.1-1.2 /spl mu/m. By optimizing pattern shape, we achieved multiple-wavelength operation with widely and precisely controlled lasing wavelengths. The maximum lasing span is as large as 77 nm. We carried out a data transmission experiment through 5-km of single-mode fiber with a 2.5 Gb/s/channel. The total throughput reaches 10 Gb/s. The VCSEL-based wavelength-division-multiplexing (WDM) source would be a good candidate for WDM-LAN beyond 10 Gb/s.  相似文献   

18.
In this paper, all-optical wavelength conversion by cross-phase modulation in a highly nonlinear fiber is investigated. Regenerative properties of the wavelength converter are demonstrated, and the effect of adding Raman gain to enhance the performance of the wavelength converter is shown. The wavelength conversion scheme is demonstrated at the record-high bit rate of 640 Gb/s.  相似文献   

19.
We review recent advances in the development of silicon photonic integrated circuits for high-speed and high-capacity interconnect applications. We present detailed design, fabrication, and characterization of a silicon integrated chip based on wavelength division multiplexing. In such a chip, an array of eight high-speed silicon optical modulators is monolithically integrated with a silicon-based demultiplexer and a multiplexer. We demonstrate that each optical channel operates at 25 Gb/s. Our measurements suggest the integrated chip is capable of transmitting data at an aggregate rate of 200 Gb/s. This represents a key milestone on the way for fabricating terabit per second transceiver chips to meet the demand of future terascale computing.   相似文献   

20.
The unitraveling-carrier photodiode (UTC-PD) is a novel photodiode that utilizes only electrons as the active carriers. This unique feature is the key for its ability to achieve excellent high-speed and high-output characteristics simultaneously. To date, a record 3-dB bandwidth of 310 GHz and a millimeter-wave output power of over 20 mW at 100 GHz have been achieved. The superior capability of the UTC-PD for generating very large high-bit-rate electrical signals as well as a very high RF output power in millimeter/submillimeter ranges can lead to innovations in various systems, such as broadband optical communications systems, wireless communications systems, and high-frequency measurement systems. Accomplishments include photoreceivers of up to 160 Gb/s, error-free DEMUX operations using an integrated UTC-PD driven optical gate of up to 320 Gb/s, a 10-Gb/s millimeter-wave wireless link at 120 GHz, submillimeter-wave generation at frequencies of up to 1.5 THz, and photonic frequency conversion with an efficiency of -8 dB at 60 GHz. For the practical use, various types of modules, such as a 1-mm coaxial connector module, a rectangular-waveguide output module, and a quasi-optic module, have been developed. The superior reliability and stability are also confirmed demonstrating usefulness of the UTC-PD for the system applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号