共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
为了克服“当前”统计模型自适应跟踪算法(CAF)跟踪匀速运动目标误差较大和跟踪加速机动目标速度与加速度估计误差和动态时延较大的缺陷,通过分析研究CAF算法,采用截断正态分布表征目标的机动加速度特性,考虑风速和加速度估计均值的影响,对机动加速度与方差自适应关系修正,自适应补偿过程噪声协方差矩阵,提出了一种改进的机动目标自适应跟踪算法。理论分析与仿真结果表明,该算法能够准确描述目标的各种机动情况,具有良好的跟踪性能和实际应用价值。 相似文献
3.
4.
针对“当前”统计模型算法中加速度极限值预先设定对算法造成的不利影响,提出了一种改进的机动目标跟踪算法,即位置偏差估计自适应算法.该算法利用位置预测估计与位置估计之间的偏差对噪声方差进行自适应调整,从而避免了加速度极限值的预先设定问题,提高了机动目标的跟踪性能.仿真结果也表明了该算法的良好跟踪性能. 相似文献
5.
基于模糊控制交互式多模型粒子滤波的静电机动目标跟踪 总被引:1,自引:0,他引:1
针对交互式多模型粒子滤波算法(IMMPF)的精度不高,算法更新时间长,难以满足静电机动目标跟踪要求的问题,提出了一种新的基于模糊控制的交互式多模型粒子滤波算法(FIMMPF)。该算法先利用模糊控制方法实现实时调整交互式多模型算法中的转换概率矩阵,使与目标当前运动状态最接近的运动模型在混合产生这一采样时刻的初始状态向量里占有更大的比重。同时,为了提高基本粒子滤波算法的精度,减小算法更新时间,再利用中心差分扩展卡尔曼滤波算法产生基本粒子滤波的建议分布函数,实现对目标运动状态的更新。理论分析和仿真结果表明,所提出的算法能够以更高的定位精度,更小的计算量实现对静电机动目标的跟踪。 相似文献
6.
7.
8.
基于比例导引律的机动目标跟踪算法 总被引:3,自引:0,他引:3
在反舰导弹做比例导引运动的基础上,将比例导引规律引入状态方程,建立线性时变模型,实现对系统状态的自适应滤波,运用Matlab语言进行仿真计算,分析并得到了在不同的初始航向角、比例导引系数、导弹的初始位置和速度下的导引弹道滤波曲线和弹目相遇时间.仿真结果表明,此方法原理是正确的,计算是可行的. 相似文献
9.
10.
11.
12.
一种"全面"的自适应机动目标跟踪算法 总被引:2,自引:0,他引:2
基于截断正态概率密度模型建立修正的截断正态概率密度模型。利用该模型并结合速度估计自适应模型提出一种“全面”自适应机动目标跟踪算法(OAF).此算法能够避免机动加速度最大值的预先设定,自适应调节目标跟踪算法中的机动频率。进一步运用神经网络方法,将机动频率与过程噪声方差进行融合,通过在线调节神经网络权值获得融合后的系统方差输出,降低现有算法因系统参数调整不当带来的精度损失。理论分析及仿真结果表明,与单纯的速度自适应模型算法相比,该算法跟踪机动目标和非机动目标时精度分别提高49. 61%和48.34%. 相似文献
13.
14.
15.
为了满足水下对抗对机动目标实时跟踪和目标航速、航向准确估计的要求,针对观测量为距离和方位的机动目标跟踪,对传统无迹卡尔曼滤波(UKF)跟踪算法进行了改善。提出根据UKF算法预测值和观测值残差的概率分布自适应调整目标状态噪声方法,使得UKF跟踪算法能够根据目标运动状态及时调整状态方程,在目标机动时减小对预测值的依赖,在目标非机动时增大对预测值的依赖。这种在线实时估计系统噪声状态的跟踪方法更加适用于机动目标的跟踪。数值仿真结果表明:该算法不仅在目标机动时具有良好的跟踪效果,而且在目标非机动时具有准确的估计性能。通过声纳信息综合处理系统验证了状态自适应UKF跟踪算法的性能。 相似文献
16.
针对非线性观测的目标跟踪问题,对滤波跟踪型数据融合进行了研究,提出了基于去偏转换测量值卡尔曼滤波算法的非线性系统中的数据融合算法.从仿真结果可以看出,集中式融合算法和分布式融合算法的差别并不大,结果基本相同.因此,在非线性系统中,基于去偏转换测量值卡尔曼滤波算法的分布式融合算法可以重构集中式融合算法. 相似文献
17.
在交互多模IMM的基础上,利用时变马尔可夫链切换系数对模型进行切换,实现对未知状态转移概率的自适应调节,提高了对机动目标的跟踪精度.仿真结果表明,改进后的IMM算法比IMM算法的跟踪精度更高,具有全面自适应跟踪能力. 相似文献