首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Choi HN  Cho SH  Lee WY 《Analytical chemistry》2003,75(16):4250-4256
Electrochemical behavior and electrogenerated chemiluminescence (ECL) of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)3(2+)) immobilized in sol-gel-derived titania TiO2)-Nafion composite films coated on a glassy carbon electrode have been investigated. The electroactivity of Ru(bpy)3(2+) ion exchanged into the composite films and its ECL behavior were strongly dependent upon the amount of Nafion incorporated into the TiO2-Nafion composite films. The ECL sensor of Ru(bpy)32+ immobilized in a TiO2-Nafion composite with 50% Nafion content showed the maximum ECL intensities for both tripropylamine (TPA) and sodium oxalate in 0.05 M phosphate buffer solution at pH 7. Detection limits were 0.1 microM for TPA and 1.0 microM for oxalate (S/N = 3) with a linear range of 3 orders of magnitude in concentration. The present ECL sensor showed improved ECL sensitivity and long-term stability, as compared to the ECL sensors based on pure Nafion films. The present Ru(bpy)3(2+) ECL sensor based on TiO2-Nafion (50%) composite films was applied as an HPLC detector for the determination of erythromycin in human urine samples. The present Ru(bpy)3(2+) ECL sensor was stable in the mobile phase containing a high content of organic solvent (30%, v/v), in contrast to a pure Nafion-based Ru(bpy)3(2+) ECL sensor. The detection limit for erythromycin was 1.0 microM, with a linear range of 3 orders of magnitude in concentration.  相似文献   

2.
Guo Z  Dong S 《Analytical chemistry》2004,76(10):2683-2688
The electrochemistry and electrogenerated chemiluminescence (ECL) of ruthenium(II) tris(bipyridine) (Ru(bpy)(3)(2+)) ion-exchanged in carbon nanotube (CNT)/Nafion composite films were investigated with tripropylamine (TPA) as a coreactant at a glassy carbon (GC) electrode. The major goal of this work was to investigate and develop new materials and immobilization approaches for the fabrication of ECL-based sensors with improved sensitivity, reactivity, and long-term stability. Ru(bpy)(3)(2+) could be strongly incorporated into Nafion film, but the rate of charge transfer was relative slow and its stability was also problematic. The interfusion of CNT in Nafion resulted in a high peak current of Ru(bpy)(3)(2+) and high ECL intensity. The results indicated that the composite film had more open structures and a larger surface area allowing faster diffusion of Ru(bpy)(3)(2+) and that the CNT could adsorb Ru(bpy)(3)(2+) and also acted as conducting pathways to connect Ru(bpy)(3)(2+) sites to the electrode. In the present work, the sensitivity of the ECL system at the CNT/Nafion film-modified electrodes was more than 2 orders of magnitude higher than that observed at a silica/Nafion composite film-modified electrode and 3 orders of magnitude higher than that at pure Nafion films. The CNT/Nafion composite film-modified GC electrodes also exhibited long-term stability.  相似文献   

3.
The voltammetry and electrogenerated chemiluminescence (ECL) of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)3 2+) ion-exchanged in Nafion and Nafion-silica composite materials have been investigated. The major goal of this work was to investigate and develop new materials and immobilization approaches for the fabrication of ECL-based sensors with improved reactivity and long-term stability. Nation-silica composite materials with varying contents of Nation (53-100 wt% relative to silica) were prepared via the two-step acid/base hydrolysis and condensation of tetramethoxysilane. The Nafion doped sols were spin cast on glassy carbon electrodes, dried, and then ion-exchanged with Ru(bpy)3 2+. The shapes of the cyclic voltammetric curves and the amount of Ru(bpy)3 2+ exchanged into the films strongly depends on the amount of Nafion incorporated into the hybrid sol. Nafion-silica films with a low content of Nafion ion-exchanged less Ru(bpy)3 2+ and exhibited tail-shaped voltammetry at 100 mV/s. The ECL of immobilized Ru(bpy)3 2+ in the presence of either tripropylamine or sodium oxalate in pH 5 acetate buffer was also strongly dependent on the amount of Nafion introduced into the composite with greater ECL observed for the Nafion-silica films relative to pure Nafion.  相似文献   

4.
A new electrogenerated chemiluminescence detection method is investigated for use in detection in reversed-phase and reversed-phase ion-pair HPLC with Ru(bpy)(3)(2+) in the mobile phase. In this method, different concentrations of Ru(bpy)(3)(2+) are dissolved in the mobile phase and the HPLC column flushed with the mobile phase for 1 h until the column is saturated with Ru(bpy)(3)(2+). The separated analytes along with Ru(bpy)(3)(2+) pass through an optical-electrochemical flow cell which has a dual platinum electrode held at a potential of 1250 mV vs a Ag/AgCl reference electrode. On the surface of the electrode, Ru(bpy)(3)(2+) is oxidized to Ru(bpy)(3)(3+) which reacts with the analytes to emit light. The retention times, retention orders, detection limits, and linearity in working curves are compared to those obtained with the conventional postcolumn Ru(bpy)(3)(2+) addition method. The retention times for dansyl amino acids with Ru(bpy)(3)(2+) in the mobile phase are longer than those obtained with the postcolumn addition approach. This may be caused by π-to-π interactions between the aromatic groups of the dansyl derivatives and the bipyridyl groups of Ru(bpy)(3)(2+) in the Ru(bpy)(3)(2+)-saturated reversed-phase column. Similarly, oxalate is separated from urine and blood plasma samples by reversed-phase ion-pair HPLC. Plasma samples are obtained using ultrafiltration to remove proteins from whole blood. Retention times for oxalate with the two detection techniques are identical, and detection limits for these techniques are compared.  相似文献   

5.
Tris(2,2'-bipyridyl)ruthenium (II) (Ru(bpy)2+) electrogerated chemiluminescence (ECL) sensor was fabricated by immobilization of Ru(bpy)2+ complex on conducting polymer@SiO2/Nafion composite film on surface of glassy carbon electrode. The conducting polymer@SiO2 nanocomposites were prepared by coating polyaniline (PANI), polypyrrole (PPy), and polythiophene (PTh) on the surface of the SiO2 sphere. The conducting polymer@SiO2 nanocomposite was characterized by scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and atomic force microscopy (AFM). The sensitivity and reproducibility of the prepared ECL sensor to tripropylamine (TPA) was evaluated. As a result, the PPy@SiO2 composite electrode exhibited high sensitivity and good reproducibility compared to that obtained with PANI@SiO2 and PTh@SiO2 composite electrodes because of the strong interaction between PPy@SiO2 and Ru(bpy)2+ complex.  相似文献   

6.
Zhang L  Dong S 《Analytical chemistry》2006,78(14):5119-5123
A novel electrogenerated chemiluminescence (ECL) sensor based on Ru(bpy)3(2+)-doped silica (RuDS) nanoparticles conjugated with a biopolymer chitosan membrane was developed. These uniform RuDS nanoparticles (approximately 40 nm) were prepared by a water-in-oil microemulsion method and were characterized by electrochemical and transmission electron microscopy technology. The Ru(bpy)3(2+)-doped interior maintained its high ECL efficiency, while the exterior nanosilica prevented the luminophor from leaching out into the aqueous solution due to the electrostatic interaction. This is the first attempt to branch out the application of RuDS nanoparticles into the field of ECL, and since a large amount of Ru(bpy)3(2+) was immobilized three-dimensionally on the electrode, the Ru(bpy)3(2+) ECL signal could be enhanced greatly, which finally resulted in the increased sensitivity. This sensor shows a detection limit of 2.8 nM for tripropylamine, which is 3 orders of magnitude lower than that observed at a Nafion-based ECL sensor. Furthermore, the present ECL sensor displays outstanding long-term stability.  相似文献   

7.
A fluorescence spectroelectrochemical sensor capable of detecting very low concentrations of metal complexes is described. The sensor is based on a novel spectroelectrochemical sensor that incorporates multiple internal reflection spectroscopy at an optically transparent electrode (OTE) coated with a selective film to enhance detection limits by preconcentrating the analyte at the OTE surface. Nafion was used as the selective cation exchange film for detecting Ru(bpy)(3)(2+), the model analyte, which fluoresces at 605 nm when excited with a 441.6-nm HeCd laser. The unoptimized linear dynamic range of the sensor for Ru(bpy)(3)(2+) is between 1 x 10(-)(11) and 1 x 10(-)(7) M with a calculated 2 x 10(-)(13) M detection limit. The sensor employs extremely thin films ( approximately 12 nm) without significantly sacrificing its sensitivity. The sensor response is demonstrated with varying film thicknesses. A state-of-the-art flow cell design allows variable cell volumes as low as approximately 4 microL. Fluorescence of the sample can be controlled by electromodulation between 0.7 and 1.3 V. Sensor operation is not reversible for the chosen model film (Nafion) and sample (Ru(bpy)(3)(2+)) but it can be regenerated with ethanol for multiple uses.  相似文献   

8.
A simple procedure to incorporate tris(2-2'-bipyridyl)ruthenium(II), [Ru(bpy)3]2+, into Nafion Langmuir-Schaefer (LS) films is described. Nafion LS films (tens of nanometers thick) were formed on quartz glass and indium tin oxide (ITO) directly from Nafion-[Ru(bpy)3]2+ Langmuir films assembled at the water-air interface. This procedure allowed the direct incorporation of [Ru(bpy)3]2+ into Nafion films without the need for subsequent loading. UV-vis spectroscopy confirmed the successful incorporation of [Ru(bpy)3]2+ within the LS films and showed that the amount of [Ru(bpy)3]2+ immobilized in this way scaled with film thickness. Voltammetric studies on ITO-modified electrodes confirmed the successful incorporation of [Ru(bpy)3]2+ and demonstrated that [Ru(bpy)3]2+ was retained within the ultrathin films over a long time scale. These electrodes were tested for the electrocatalytic reduction of tripropylamine. Significant catalysis was observed due to the rapid turnover of [Ru(bpy)3]2+/3+ between the electrode surface and outer boundary of the film, as a direct consequence of the ultrathin film dimensions. Concomitant electrochemiluminescence (ECL) was demonstrated highlighting the potential of this material for sensing applications.  相似文献   

9.
The electrochemistry and electrogenerated chemiluminescence (ECL) of Ru(bpy)3(2+) (bpy = 2,2'-bipyridyl) were studied in the presence of the nonionic surfactants Triton X-100, Thesit, and Nonidet P40. The anodic oxidation of Ru(bpy)3(2+) produces ECL in the presence of tri-n-propylamine in both aqueous and surfactant solutions. Increases in both ECL efficiency (> or =8-fold) and duration of the ECL signal were observed in surfactant media. A shift to lower energies of the Ru(bpy)3(2+) ECL emission by approximately 8 nm was also observed. The one-electron oxidation of Ru(bpy)3(2+) to Ru(bpy)3(3t) occurs at + 1.03 V vs Ag/AgCl in aqueous buffered (0.2 M potassium phosphate) solution as found by square wave voltammetry. This potential did not shift in surfactant systems, indicating that the redshifts in ECL emission are due to stabilization of ligand pi* orbitals in the metal-to-ligand charge-transfer excited state. These results are consistent with hydrophobic interactions between Ru(bpy)3(2+) and the nonionic surfactants.  相似文献   

10.
Li J  Xu Y  Wei H  Huo T  Wang E 《Analytical chemistry》2007,79(14):5439-5443
Herein, homogenously partial sulfonation of polystyrene (PSP) was performed. An effective electrochemiluminescence (ECL) sensor based on PSP with carbon nanotube (CNTs) composite film was developed. Cyclic voltammetry and electrochemical impendence spectroscopy were applied to characterize this composite film. The PSP was used as an immobilization matrix to entrap the ECL reagent Ru(bpy)3(2+) due to the electrostatic interactions between sulfonic acid groups and Ru(bpy)3(2+) cations. The introduction of CNTs into PSP acted not only as a conducting pathway to accelerate the electron transfer but also as a proper matrix to immobilize Ru(bpy)3(2+) on the electrode by hydrophobic interaction. Furthermore, the results indicated the ECL intensity produced at this composite film was over 3-fold compared with that of the pure PSP film due to the electrocatalytic activity of the CNTs. Such a sensor was verified by the sensitive determinations of 2-(dibutylamino)ethanol and tripropylamine.  相似文献   

11.
We report herein an attenuated total reflectance (ATR) absorbance-based spectroelectrochemical sensor for tris(2,2'-bipyridyl)ruthenium(II) ion [Ru(bpy)(3)(2+)] that employs ultrathin (24-50 nm) Nafion films as the charge-selective layer. This film serves to sequester and preconcentrate the analyte at the optically transparent electrode surface such that it can be efficiently detected optically via electrochemical modulation. Our studies indicate that use of ultrathin films in tandem with continuous flow of sample solution through the cell compartment leads to a 100-500-fold enhancement in detection limit (10 nM) compared to earlier absorbance-based spectroelectrochemical sensors ( approximately 1-5 microM); markedly shorter analysis times also result. We report the dependence of the measured absorbance on sample flow rate and Nafion film thickness, and also provide calibration curves that illustrate the linear range and detection limits of the sensor using a 24 nm film at a constant sample flow rate of 0.07 mL/min.  相似文献   

12.
Liu J  Yan J  Yang X  Wang E 《Analytical chemistry》2003,75(14):3637-3642
The design and performance of a miniaturized chip-type tris(2,2'-bipyridyl)ruthenium(II) [Ru(bpy)3(2+)] electrochemiluminescence (ECL) detection cell suitable for both capillary electrophoresis (CE) and flow injection (FI) analysis are described. The cell was fabricated from two pieces of glass (20 x 15 x 1.7 mm), and the 0.5-mm-diameter platinum disk was used as working electrode held at +1.15 V (vs silver wire quasi-reference), the stainless steel guide tubing as counter electrode, and the silver wire as quasi-reference electrode. The performance traits of the cell in both CE and FI modes were evaluated using tripropylamine, proline, and oxalate and compared favorably to those reported for CE and FI detection cells. The advantages of versatility, sensitivity, and accuracy make the device attractive for the routine analysis of amine-containing species or oxalate by CE and FI with Ru(bpy)3(2+) ECL detection.  相似文献   

13.
Xu G  Dong S 《Analytical chemistry》2000,72(21):5308-5312
A new detection scheme for the determination of adsorbable coreactants of Ru(bpy)3(2+) electrochemiluminescent reaction is presented. It is based on selective preconcentration of coreactant onto an electrode, followed by Ru(bpy)3(2+) electrochemiluminescent detection. The coreactant employed is chlorpromazine. It was sensitively detected after 5-min preconcentration onto a lauric acid-modified carbon paste electrode. The linear concentration range was found to occur from 1 x 10(-8) to 3 x 10(-6) mol L-1 with a detection limit of 3.1 x 10(-9) mol L-1. The total analysis time is less than 10 min. As a result of selective preconcentration and medium exchange, such remarkable selectivity is achieved that reproducible quantitation of chlorpromazine in urine is possible.  相似文献   

14.
Fan FR  Bard AJ 《Nano letters》2008,8(6):1746-1749
We demonstrate a novel method of observing single particle collision events with electrogenerated chemiluminescence (ECL). A single event is characterized by the enhancement of ECL intensity during the collision of an individual platinum nanoparticle (Pt NP) on an indium tin oxide electrode, which catalyzes the oxidation of Ru(bpy)3(2+) and a coreactant, for example, tri- n-propylamine (TPrA), present in the solution. Every collision produces a unique photon spike whose amplitude and frequency can be correlated with the size and concentration of the Pt NPs. A large amplification of ECL intensity can occur by choosing an appropriate measuring electrode and using high concentrations of Ru(bpy)3(2+) and the coreactant.  相似文献   

15.
Miao W  Bard AJ 《Analytical chemistry》2003,75(21):5825-5834
Anodic electrogenerated chemiluminescence (ECL) with tri-n-propylamine (TPrA) as a coreactant was used to determine DNA and C-reactive protein (CRP) by immobilizations on Au(111) electrodes using tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)) labels. A 23-mer synthetic single-stranded (ss) DNA derived from the Bacillus anthracis with an amino-modified group at the 5' end position was covalently attached to the Au(111) substrate precoated with a self-assembled thiol monolayer of 3-mercaptopropanoic acid (3-MPA) in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDAC) and then hybridized with a target ssDNA tagged with Ru(bpy)(3)(2+) ECL labels. Similarly, biotinylated anti-CRP species were immobilized effectively onto the Au(111) substrate precovered with a layer of avidin linked covalently via the reaction between avidin and a mixed thiol monolayer of 3-MPA and 16-mercaptohexadecanoic acid on Au(111) in the presence of EDAC and N-hydroxysuccinimide. CRP and anti-CRP tagged with Ru(bpy)(3)(2+) labels were then conjugated to the surface layer. ECL responses were generated from the modified electrodes described above by immersing them in a TPrA-containing electrolyte solution. A series of electrode treatments, including blocking free -COOH groups with ethanol amine, pinhole blocking with bovine serum albumin, washing with EDTA/NaCl/Tris buffer, and spraying with inert gases, were used to reduce the nonspecific adsorption of the labeled species. The ECL peak intensity was linearly proportional to the analyte CRP concentration over the range 1-24 microg/mL. CRP concentrations of two unknown human plasma/serum specimens were measured by the standard addition method based on this technique.  相似文献   

16.
Ascorbic (H2A) and dehydroascorbic (DA) acids were for the first time directly determined in a single chromatographic run by means of the tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)(3)2+) based electrogenerated chemiluminescence (ECL) detection. For the first time, it was demonstrated that DA, a nonelectroactive compound, is ECL active and is responsible for the ECL behavior of H2A. This fact, together with the lack of a DA standard, suggested the use of a calibration graph obtained for H2A, for determining both analytes. The proven ECL activity of DA, together with literature data relative to the standard redox potentials of the different species coming from H2A, led to a reconsideration of the proposed ECL reaction mechanism for H2A. The role of the OH- ion in the reaction mechanism of the two analytes appeared to be crucial. H2A and DA could be separated by a suitable C18-reversed-phase HPLC column using an aqueous 30 mM H3PO4 solution as the mobile phase. The optimal ECL response was achieved by polarizing the working electrode at 1.150 Vvs SCE (standard calomel electrode) (oxidation diffusion limiting potential for both H2A and Ru(bpy)(3)2+). The Ru(bpy)(3)2+ solution, at pH 10 for carbonate buffer, was mixed to the eluent solution in a postcolumn system, obtaining, still at pH 10, the final 0.25 mM Ru(bpy)(3)2+ concentration. The detection limit found for the two analytes was 1 x 10(-7) M. The method was successfully applied to the determination of the analytes in a commercially available orange fruit juice.  相似文献   

17.
Zu Y  Bard AJ 《Analytical chemistry》2001,73(16):3960-3964
We describe the effect of electrode surface hydrophobicity on the electrochemical behavior and electrogenerated chemiluminescence (ECL) of Ru(bpy)3(2+) (bpy = 2,2'-bipyridyl)/tripropylamine (TPrA) system. Gold and platinum electrodes were modified with different thiol monolayers. The hydrophobicity of the electrode surfaces changed with different terminal groups of the thiol molecules. The oxidation rate of TPrA was found to be much larger at the modified electrode with a more hydrophobic surface. The adsorption of neutral TPrA species on this kind of surface was assumed to contribute to the faster anodic kinetics. Due to the rapid generation of the highly reducing radical, TPrA., ECL intensity increased significantly at more hydrophobic electrodes. This electrode surface effect in the ECL analytical system allows one to improve the detection sensitivity at low concentrations of Ru(bpy)3(2+). The surfactant effect on the ECL process was also examined and discussed based on the change of electrode hydrophobicity by the adsorption of surfactant species.  相似文献   

18.
Electrochemiluminescence (ECL) of Ru(bpy)(3)(2+) in water only, without any added electrolyte or reducing agents, has been obtained at carbon interdigitated microelectrode arrays (C-IDAs) of 2 μm width and spacing. In a generation/collection biasing mode, ECL can be clearly seen with the naked eye in normal room lighting at concentrations greater than 1 mM. Using a conventional photomultiplier tube (PMT), a detection limit of 10(-)(7) M Ru(bpy)(3)(2+) has been achieved for an electrode area of 0.25 mm(2). In comparison, the ECL intensity produced at Pt-IDA of the same geometry, under identical experimental conditions, was more than 300 times less. The ECL obtained at C-IDAs is attributed to the annihilation reaction of the reduced and oxidized forms of the Ru(bpy)(3)(2+) made possible due to the small electrode spacing.  相似文献   

19.
Sun X  Du Y  Dong S  Wang E 《Analytical chemistry》2005,77(24):8166-8169
A novel method for effective immobilization of Ru(bpy)3(2+) on an electrode surface is developed. The whole process involves two steps: the electrostatic interactions between citrate-capped gold nanoparticles (AuNPs) and Ru(bpy)3Cl2 in aqueous medium were used to fabricate Ru(bpy)(3)2+-AuNP aggregates (Ru-AuNPs) first, and then the Au-S interactions between as-formed Ru-AuNPs and sulfhydryl groups were used to effectively immobilize the Ru-AuNPs on a sulfhydryl-derivated indium tin oxide (ITO) electrode surface. As-prepared ITO electrode shows excellent stability, and the ECL active species Ru(bpy)3(2+) contained therein exhibit excellent ECL behaviors.  相似文献   

20.
A sensor constructed by alternate layer-by-layer adsorption of PDDA cations and double-stranded (ds)-DNA on oxidized pyrolytic graphite electrodes was evaluated for detection of chemical damage to ds-DNA from known damage agent styrene oxide. Films made with PDDA ions of structure (PDDA/DNA)2 were approximately 6 nm thick and contained 0.23 microg of ds-DNA. Catalytic oxidation using 50 microM Ru(bpy)3(2+) (bpy = 2,2'-bipyridine) and square wave voltammetry (SWV) provided more sensitive detection of DNA damage than direct SWV oxidation. The catalytic peaks increased linearly with time during incubations with styrene oxide, but only minor changes were detected during incubation with nonreactive toluene. For best sensitivity, the outer layer of the film must be ds-DNA, and analysis should be done at low salt concentration. Studies of DNA and polynucleotides in solutions and films suggested that oxidation of guanine and chemically damaged adenine in partly unraveled, damaged DNA were the most likely contributors to the catalytic peak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号