首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
F.A. Al-Agel 《Vacuum》2011,85(9):892-897
The optical constants (absorption coefficient, optical band gap, refractive index, extinction coefficient, real and imaginary parts of dielectric constants) of amorphous and thermally annealed thin films of Ga15Se77In8 chalcogenide glasses with thickness 4000 Å have been investigated from absorption and reflection spectra as a function of photon energy in the wave length region 400-800 nm. Thin films of Ga15Se77In8 chalcogenide glasses were thermally annealed for 2 h at three different annealing temperatures 333 K, 348 K and 363 K, which are in between the glass transition and crystallization temperature of Ga15Se77In8 glasses. Analysis of the optical absorption data shows that the rule of non-direct transitions predominates. It was found that the optical band gap decreases with increasing annealing temperature. It has been observed that the value of absorption coefficient and extinction coefficient increases while the values of refractive index decrease with increasing annealing temperature. The decrease in optical band gap is explained on the basis of the change in nature of films, from amorphous to crystalline state. The dc conductivity of amorphous and thermally annealed thin films of Ga15Se77In8 chalcogenide glasses is also reported for the temperature range 298-393 K. It has been observed that the conduction is due to thermally assisted tunneling of the carriers in the localized states near the band edges. The dc conductivity was observed to increase with the corresponding decrease in activation energy on increasing annealing temperature in the present system. These results were analyzed in terms of the Davis-Mott model.  相似文献   

2.
A study of the effects of changes in composition, film thickness, substrate deposition temperature and annealing on the optical properties of MoO3-In2O3 is presented. The results are found to be compatible with the reduction in the value of optical energy gap of these materials as the molar fraction of In2O3 in the MoO3 thin film increases. This decrease of optical gap may be attributed to the incorporation of In(III) ions in an MoO3 lattice. The decrease in optical band gap with increasing thickness may be interpreted in terms of the incorporation of oxygen vacancies which are also believed to be the source of conduction electrons in the MoO3-In2O3 complex. The decrease of band gap with increasing substrate temperature may be attributed to the enhanced ordering of the samples and the decrease of band gap with annealing may be attributed to a reduction in the concentration of lattice imperfections.  相似文献   

3.
采用不同厚度的Fe膜在673K热硫化20h制备出具有不同晶粒尺寸的FeS2薄膜,分析并测定了薄膜组织结构、微应变及光吸收性能.结果表明,Fe膜硫化形成的FeS2薄膜厚度在120—550nm范围内变化时,可导致平均晶粒尺寸在40-80nm之间变化.FeS2晶粒尺寸的变化造成了晶体面缺陷密度的变化,可引起微观内应力水平、缺陷能级分布和晶界势垒高度的变化,进而使得薄膜的微应变、点阵畸变度、光吸收系数及禁带宽度等物理特性随晶粒尺寸的增加而降低.  相似文献   

4.
The photovoltaic effect and good rectifying behavior have been observed in a heterostructure fabricated by depositing the La0.7Sr0.3MnO3 film on a Si substrate. The photovoltages increase quickly to the maximum values at about 266μs and then decrease gradually. The maximum photovoltage is about 0.220V at T = 90K. The maximum photovoltages decrease with increasing the temperature, which is attributed to the stronger thermal fluctuation. A local minimum in the photovoltages-temperature curve is observed at T = 143K, which is consistent with the metal-insulator transition temperature, and this might be caused by the thinner thickness of the depletion layer due to a change in the band structure of the LSMO layer. This result indicates that the photovoltaic effect of the manganite-based heterostructure can be changed by the intrinsic phase transition.  相似文献   

5.
Electrical resistance of CdSe0.8Te0.2 thin films were found to be dependent on various film parameters such as substrate temperature, film thickness, deposition rate and post-deposition heat treatment in different environments. A decrease in film resistivity was observed for thicker films and for those heat treated in vacuum. Films deposited at higher substrate temperatures and faster rates showed an increase in film resistivity. A spectrum of activation energies was observed in the films which fell within either of the activation energies observed in CdSe or CdTe films. Films heated in an oxygen environment showed an increase in film resistivity with a different activation energy. Transmission electron microscopy (TEM) of the films showed an improvement in crystallinity with increasing film thickness and substrate temperature, and a reduction in crystallinity with increasing deposition rate.  相似文献   

6.
The Ag/n-ZnO/p-Si(100)/Al heterojunction diodes were fabricated by pulsed laser deposition of zinc oxide (ZnO) thin films on p-type silicon. The X-ray diffraction analysis shows the formation of ZnO thin film with hexagonal structure having strong (002) plane as preferred orientation. The energy band gap of ZnO films simultaneously deposited on quartz substrate was calculated from the measured UV–Visible transmittance spectra. High purity vacuum evaporated silver and aluminum thin films were used to make contacts to the n-ZnO and p-silicon, respectively. The current–voltage and capacitance–voltage characteristics of Ag/n-ZnO/p-Si(100)/Al heterostructures were measured over the temperature range of 80–300 K. The Schottky barrier height and ideality factor were determined by fitting of the measured current–voltage data into thermionic emission diffusion equation. It is observed that the barrier height decreases and the ideality factor increases with decrease of temperature and the activation energy plot exhibit non-linear behavior. This decrease in barrier height and increase in ideality factor at low temperature are attributed to the occurrence Gaussian distribution of barrier heights. The capacitance–voltage characteristics of Ag/n-ZnO/p-Si(100)/Al heterojunction diode were also studied over the wide temperature range. Capacitance–voltage data are used to estimate the barrier height and impurity concentration in n-type ZnO.  相似文献   

7.
Silicon oxynitride [SiO2:N] thin films have been grown by oxidizing silicon in N2O at 900, 1000 and 1100 °C and at 760 and 1520 torr. It is shown that the dominant electrical conduction mechanism, for high electric fields, is the field assisted thermionic emission from the traps (Poole-Frenkel effect), and is not direct or Fowler-Nordheim tunneling, as typically occurs in thermal silicon oxide with similar thickness. Electrical conduction in these films occurs by field assisted electron emission from donor traps with energy levels varying in the range from 0.5 to 1 eV from the conduction band. The results shown here indicate that the best quality films are those grown at low temperature and pressure, since they give films with a higher critical electric field, a higher energy barrier depth at the traps and less donors compensated by acceptors than those grown at high temperatures and pressures.  相似文献   

8.
The magnetic and electrical properties of the cobalt ferrite/metal composite thin films, prepared by reactive sputtering, were studied as a function of substrate temperature. With increasing substrate temperature, the saturation magnetization of the thin films increased owing to precipitation of the Co0.67Fe0.33 phase. Also, the electrical resistivity of the thin films decreased. From Hall experiments, the decrease of electrical resistivity of the composite thin films was mainly attributed to the increase of electron concentration. The Seebeck coefficient measurement shows that the electrical conduction mechanism of the thin films containing 37.8 and 33.7 at % Co changes from p-type to n-type and that of the thin films containing 28.5 at % Co remains n-type with increasing substrate temperature. This might be attributed to the change in composition of the cobalt ferrite matrix to Fe-excess with precipitation of Co-rich Fe alloy. ©1999 Kluwer Academic Publishers  相似文献   

9.
《Materials Letters》1986,4(3):145-148
Single phase polycrystalline films of AgGaSe2 with different thicknesses are prepared on glass substrates by flash evaporation technique, at a substrate temperature of 523 K. The electrical properties of these films such as resistivity. Hall mobility, carrier concentration and activation energy are determined with different thicknesses of the films. The optical absorption in these films is studied in the energy range 1.3-1.9 eV and found to possess a direct band gap with an energy gap of 1.61 eV for a AgGaSe2 film having thickness 250 nm. The implications are discussed.  相似文献   

10.
The thermally evaporated stoichiometric CdI2 films show goodc-axis alignment normal to substrate plane for film thickness up to 200 nm. The optical absorption data indicate an allowed direct interband transition across a gap of 3.6 eV in confirmation with earlier band structure calculations. However, part of the absorption data near band edge can be fitted to an indirect band gap of 3 eV. The dependence of band gap on film thickness (> 200 nm) can be explained qualitatively in terms of decreasing grain boundary barrier height with grain size.  相似文献   

11.
A.F. Qasrawi 《Thin solid films》2011,519(11):3768-3772
Polycrystalline AgIn5S8 thin films are obtained by the thermal evaporation of AgIn5S8 crystals onto ultrasonically cleaned glass substrates under a pressure of ~ 1.3 × 10−3 Pa. The temperature dependence of the optical band gap and photoconductivity of these films was studied in the temperature regions of 300-450 K and 40-300 K, respectively. The heat treatment effect at annealing temperatures of 350, 450 and 550 K on the temperature dependent photoconductivity is also investigated. The absorption coefficient, which was studied in the incidence photon energy range of 1.65-2.55 eV, increased with increasing temperature. Consistently, the absorption edge shifts to lower energy values as temperature increases. The fundamental absorption edge which corresponds to a direct allowed transition energy band gap of 1.78 eV exhibited a temperature coefficient of −3.56 × 10−4 eV/K. The 0 K energy band gap is estimated as 1.89 eV. AgIn5S8 films are observed to be photoconductive. The highest and most stable temperature invariant photocurrent was obtained at an annealing temperature of 550 K. The photoconductivity kinetics was attributed to the structural modifications caused by annealing and due to the trapping-recombination centers' exchange.  相似文献   

12.
A. Rabhi  B. Rezig 《Thin solid films》2009,517(7):2477-186
Structural, optical and electrical properties of CuSbS2 thin films grown by thermal evaporation have been studied relating the effects of substrate heating conditions of these properties. The CuSbS2 thin films were carried out at substrate temperatures in the temperature range 100-200 °C. The structure and composition were characterized by XRD, SEM and EDX. X-ray diffraction revealed that the films are (111) oriented upon substrate temperature 170 °C and amorphous for the substrate temperatures below 170 °C. No secondary phases are observed for all the films. The optical absorption coefficients and band gaps of the films were estimated by optical transmission and reflection measurements at room temperature. Strong absorption coefficients in the range 105-106 cm− 1 at 500 nm were found. The direct gaps Eg lie between 0.91-1.89 eV range. It is observed that there is a decrease in optical band gap Eg with increasing the substrate temperature. Resistivity of 0.03-0.96 Ω cm, in dependence on substrate temperature was characterized. The all unheated films exhibit p-type conductivity. The characteristics reported here also offer perspective for CuSbS2 as an absorber material in solar cells applications.  相似文献   

13.
The electrical conductivity and stability in resistance of CdSe0.2Te0.8 thin films in different ambients and deposited at different substrate temperatures were investigated. A reduction in conduction activation energy with increase in film thickness and deposition temperature is accounted for by the fact that in CdSe x Te1–x inhomogeneous semiconductor thin films, the potential relief inhomogeneity may be reduced with increase in film thickness and substrate temperature, which results in the decrease of conduction activation energy of the films.  相似文献   

14.
Bi3.25La0.75Ti3O12(BiLT) thin films with different thickness were successfully deposited onto fused quartz by chemical solution deposition. X-ray diffraction analysis shows that BiLT thin films are polycrystalline with (0 0 2)-preferred orientation. The dispersion of refractive indices of the BiLT thin films was investigated by the optical transmittance spectrum. The optical band gap energy was estimated from the graph of (hνα)2 versus . The results show that the refractive index and band-gap energy of the BiLT thin films decrease with the films thickness.  相似文献   

15.
A discussion of the optical properties of two systems of dielectric films i.e. In2O3 and of mixed oxides In2O3−MoO3 system is presented. Film thickness, substrate temperature, annealing and composition (in molar%) have a profound effect on the structure and optical properties of these films. The decrease in optical band gap with the increase in film thickness of In2O3 is interpreted in terms of incorporation of oxygen vacancies in the In2O3 lattice. The decrease in optical band gap with the increase in substrate temperature and annealing of In2O3 thin films is ascribed to the release of trapped electrons by thermal energy or by the outward diffusion of the oxygen-ion vacancies, which are quite mobile even at low temperature. For the mixed oxides In2O3−MoO3 system the results are found to be compatible with the reduction in the value of optical band gap of these materials as the molar fraction of MoO3 increases in the In2O3 thin films and is attributed to the incorporation of Mo(VI) ions in an In2O3lattice that causes the indium orbital to become a little less tightly bound. The decrease in optical band gap of mixed oxides In2O3−MoO3 system, with increasing film thickness is interpreted in terms of incorporation of oxygen vacancies in both In2O3 and MoO3 lattice which are also believed to be the source of conduction electrons in In2O3–MoO3 complex. The decrease in optical band gap with increasing substrate temperature and annealing of mixed oxides In2O3−MoO3 system is due to the increasing concentration of oxygen vacancies, formation of indium and molybdenum species of lower oxidation state and indium interstitials. The blue colouration of mixed oxides In2O3–MoO3 samples is due to the inter-electron transfer from oxygen 2p to molybdenum 4d level due to which Mo species of lower oxidation states are formed.  相似文献   

16.
Thin bismuth films (thickness 25 nm) have been vacuum-deposited onto glass substrates at different substrate temperatures in a vacuum of 2×10–5 torr. The resistance of the films has been measured as a function of temperaturein situ during and after annealing. It is found that the resistance of all the annealed films decreases with increasing temperature thus showing a semiconducting type of behaviour. The films do not show a resistivity minimum observed in thicker films [1]. The absence of a resistivity minimum is attributed to the thinness of the films and consequent larger energy band gap and smaller grain size.  相似文献   

17.
Growth behavior and optical properties of N-doped Cu2O films   总被引:1,自引:0,他引:1  
N-doped Cu2O films are deposited by sputtering a CuO target in the mixture of Ar and N2. The structures zand optical properties have been studied for the films deposited at different temperatures. It is found that N-doping can suppress the formation of CuO phase in the films. The films are highly (100) textured at low temperatures and gradually change to be highly (111) textured at the temperature of 500 °C. With the analysis of (111) and (100) grain sizes, the surface free energy and grain size of critical nuclei are suggested to dominate the film texture. The analysis of the atomic force microscopy shows that the film growth can be attributed to the surface-diffusion-dominated growth. The forbidden rule of band gap transition is found disabled in the N-doped Cu2O films, which can be attributed to the occupation of 2p electrons of nitrogen at the top of valence band. The optical band gap energy is determined to be 2.52 ± 0.03 eV for the films deposited at different temperatures.  相似文献   

18.
S. Yildirim  D. Deger  I. Turhan 《Vacuum》2005,77(3):329-335
The dielectric constant and the dielectric loss of tantalum pentoxide (Ta2O5) thin films, produced by sol-gel spin-coated process on Corning glass substrates, have been investigated in the frequency range of 20-105 Hz and the temperature range of 183-403 K, using ohmic Al electrodes. The frequency and temperature dependence of relaxation time has also been determined. The capacitance and loss factor were found to decrease with increasing frequency and increase with increasing temperature. The activation energy values were evaluated and a good agreement between the activation energy values obtained from capacitance and dielectric loss factor measurements were observed.  相似文献   

19.
Thin films of Ge28−xSe72Sbx (x=0, 8, 16, 24 at%) with thickness of 200 nm are prepared by thermal evaporation onto glass substrates under vacuum of 5.3×10−5 mbar. Optical reflectance and transmittance of these films are measured at room temperature in the light wavelength region from 200 to 1100 nm. The estimated optical energy gap, Eg, is found to decrease from 2 eV (0 at% Sb) to 1.5 eV (24 at% Sb), whereas the band tail width, Ee, increases from 0.062 to 0.077 eV, respectively. The refractive index, n, and extinction coefficient, κ, are determined as functions of wavelength. The DC electrical conductivity, σ, of films is measured as a function of temperature in the range from 300 to 360 K. The extracted value of activation energy, ΔE, is found to decrease from 0.95 eV (0 at% Sb) to 0.74 eV (24 at% Sb). Optical and electrical behavior of films can be explained in terms of cohesive energy (CE) and Se-Se defect bonds.  相似文献   

20.
Single phase copper indium disulphide (CuInS2) thin films of thickness between 60 nm and 650 nm with the chalcopyrite structure are obtained on NaCl and glass substrates by flash evaporation. The films were found to ben-type semiconducting. The influence of the substrate temperature on the crystallinity, conductivity, activation energy and optical band gap was studied. An improvement in the film properties could be achieved up to a substrate temperature of 523 K at a molybdenum source temperature of 1873 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号