首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
大米微孔淀粉的酶法制备工艺优化研究   总被引:1,自引:1,他引:1  
本文以水解率为指标,研究仅一淀粉酶与糖化酶复合水解大米淀粉制备微孔淀粉的工艺条件.通过单因素和正交试验确定酶解最佳工艺条件:α-淀粉酶:糖化酶=1:3,酶用量2.0%,反应时间20h,反应温度42℃,pH值4.2.吸水率和吸油率测试对酶解前后的大米淀粉进行性质分析表明,微孔淀粉吸水、吸油能力明显大于原淀粉.  相似文献   

2.
研究木薯微孔淀粉复合酶法的制备工艺,以吸油性能为指标,通过单因素和正交正交试验,研究淀粉乳浓度、复合酶用量、复合酶的配比、反应体系pH值、反应温度和反应时间等因素对木薯微孔淀粉吸油性能的影响.复合酶法生产木薯微孔淀粉的最佳工艺条件:底物浓度60%,酶用量2.5%,α-淀粉酶和糖化酶酶活力配比为1:5,pH为6.0,反应温度60℃,反应时间7 h,所得木薯微孔淀粉的吸油率和比表面积比原淀粉分别提高了53%和54%.  相似文献   

3.
袁学会  易美华  潘颉 《食品科学》2009,30(18):217-221
为了优化包埋粉末油脂的木薯微孔淀粉工艺、提高吸附性能,利用糖化酶和α- 淀粉酶对木薯淀粉进行处理,先通过六组单因素试验确定反应时间、反应温度、pH 值、底物浓度、酶浓度以及糖化酶和α- 淀粉酶配比最佳范围,再通过L18(37)正交试验,研究这些因素对木薯微孔淀粉吸附性能的影响。结果表明,当反应时间7h、温度60℃、pH6.0、底物浓度40%、酶浓度2.5%、糖化酶和α- 淀粉酶配比为1:4(m/m)时制备的木薯微孔淀粉的吸附性能最佳,木薯微孔淀粉对油脂的吸附性与原淀粉相比,从11.5% 提高到52%,提高了4.52 倍。  相似文献   

4.
以马铃薯为实验材料制备微孔淀粉,考察复合酶添加量及复合酶中α-淀粉酶和糖化酶的比例、反应温度、反应时间和反应pH对微孔淀粉吸油率、吸水率的影响。根据单因素实验结果,采用Box-Behnken试验设计和响应面分析法,确定其最佳工艺条件为:加酶量0.85%、α-淀粉酶和糖化酶的比例1∶2,温度50℃,反应时间12h,pH 4.15,此条件下微孔马铃薯淀粉得率为61.39%,淀粉的吸油率为66.85%。回归模型吸油率的预测值与实测值接近,表明响应面法对马铃薯微孔淀粉制备工艺的优化合理可行。  相似文献   

5.
周琼  王浩东  张博  陈宗道 《食品科学》2010,31(22):216-220
通过单因素、部分因子、Box-Behnken 试验,确定最佳制备微孔淀粉的工艺参数。结果表明:反应温度51.92℃、反应时间13.15h、淀粉乳体积分数14.24%、酶用量4.20%、酶配比(m糖化酶:m淀粉酶)4:1、pH4.4 为最佳工艺参数,此时微孔淀粉的吸水率156.01%。  相似文献   

6.
甘薯微孔淀粉制备技术及吸附性能研究   总被引:7,自引:0,他引:7  
用淀粉糖化酶、α-淀粉酶、普鲁兰酶水解甘薯淀粉制备一种具有吸附功能微孔淀粉载体。研究表明,淀粉糖化酶对生甘薯淀粉作用力最强;淀粉糖化酶水解制备甘薯微孔淀粉最佳工艺条件是:温度45℃,pH值4,酶用量为1%,时间24小时,水解率为51.52%。微孔淀粉对色素、水溶性维生素、油脂的吸附能力远远高于原淀粉。通过交联反应能明显提高微孔淀粉的结构性能和吸附性能。  相似文献   

7.
以水解率为指标,研究α-淀粉酶与糖化酶复合水解绿豆淀粉制备微孔淀粉工艺条件,通过单因素和正交试验确定酶解最佳工艺条件:α-淀粉酶:糖化酶=1:3,酶用量2.0%,时间20 h,温度42℃,pH4.2。经吸水、吸油率测试,对酶解前后绿豆淀粉进行性质分析表明,微孔淀粉吸水、吸油能力明显大于原淀粉。  相似文献   

8.
多孔淀粉是一种新型酶变性淀粉,本文采用α-淀粉酶和糖化酶复合酶解法制备多孔淀粉,对其工艺条件进行研究,当α-淀粉酶和糖化酶的比例为1:5、反应温度60℃,反应时间32h,pH4.5,酶用量2.0%时,可得到吸油率较高的多孔淀粉,可用于牡蛎水解液的进一步吸附。  相似文献   

9.
正交试验优化木薯微孔淀粉的工艺研究   总被引:3,自引:0,他引:3  
利用α-淀粉酶制备木薯微孔淀粉。通过L9(3^4)正交试验,研究酶用量、pH值、反应温度和反应时间对微孔淀粉吸附性能的影响。实验证明:木薯微孔淀粉对柠檬黄色素、油脂的吸附性能好于木薯淀粉对柠檬黄色素、油脂的吸附性。并得出利用α-淀粉酶制备木薯微孔淀粉的最佳工艺条件是:酶用量为1.0%,pH值为4.67,温度为50℃,反应时间为16h。  相似文献   

10.
以α-淀粉酶和糖化酶复合酶解制备微孔木薯淀粉,研究了加酶量、反应温度、pH值、时间等因素对微孔淀粉水解率和吸油率的影响。得出制备微孔木薯淀粉的最佳条件为:加酶量1%,酶配比(α-淀粉酶:糖化酶)1:2,反应温度55℃,pH值5.5,反应时间16h,所得微孔淀粉的水解率为55.71%,吸油率为92.18%,并借助于偏光显微镜、扫描电子显微镜(SEM)对产品的显微结构进行表征。  相似文献   

11.
酶法制备玉米微孔淀粉新工艺研究   总被引:4,自引:2,他引:2  
对酶法水解玉米淀粉制备微孔淀粉的工艺条件进行研究。研究表明:葡萄糖淀粉酶与α-淀粉酶复配使用能提高酶法水解玉米淀粉的水解率及微孔淀粉吸附性能,其最佳工艺为:反应温度50℃,pH值4.5,反应时间16 h,葡萄糖淀粉酶用量为1.0%(占淀粉的质量分数),α-淀粉酶用量为0.5%(占淀粉的质量分数)。  相似文献   

12.
为优化微孔淀粉的制备工艺,采用不同配比复合酶对淀粉进行酶解处理。借助L9(34)正交试验,研究不同的反应条件对微孔淀粉吸附性的影响。试验得出:复合酶处理淀粉后,在木薯淀粉表面形成微孔,且木薯微孔淀粉的比表面积大于木薯淀粉的比表面积。当复合酶中的α-淀粉酶与糖化酶比例为1∶5时,复配效果最佳。该条件下的最优化工艺为:复合酶用量1.0%、反应温度50℃、pH值5.5、反应时间16h。  相似文献   

13.
以木薯淀粉为原料,三氯氧磷为交联剂,糖化酶与α-淀粉酶为复合酶,对交联微孔木薯淀粉的制备及其性能进行了研究.结果表明:交联淀粉乳浓度、交联剂的用量、复合酶用量、缓冲液pH、酶解温度和酶解时间对交联微孔淀粉性能影响较显著.当交联淀粉乳浓度为30%、交联剂用量为80μL、缓冲液pH4.5、复合酶用量2.0%、酶解温度50℃、酶解时间12h时,交联微孔淀粉具有较佳吸水率和吸油能力.通过SEM、XRD和TGA对交联微孔淀粉进行了测定与分析.  相似文献   

14.
酶法制备多孔玉米淀粉及其显微结构的研究   总被引:2,自引:1,他引:2  
聂丽红  罗志刚  王颖  罗发兴 《现代食品科技》2009,25(12):1427-1430,1426
采用α-淀粉酶和糖化酶双酶协同制备多孔玉米淀粉,研究了加酶量、反应温度、pH值、时间等因素对多孔淀粉水解率和吸油率的影响,得出制备多孔玉米淀粉的最佳条件为:加酶量1%以淀粉干基计),酶配比(α-淀粉酶:糖化酶)1:2,反应温度55℃,pH 5.0,反应时间16 h,所得多孔淀粉的水解率为53.45%,吸油率为98.48%,并借助于偏光显微镜、扫描电子显微镜(SEM)对产品的显微结构进行研究.  相似文献   

15.
以荸荠淀粉为原料,以辛烯基琥珀酸酐为酯化剂,湿法制备辛烯基琥珀酸荸荠淀粉酯,研究反应温度、反应时间、反应pH、辛烯基琥珀酸酐用量及反应初始淀粉乳浓度对辛烯基琥珀酸荸荠淀粉酯的取代度和反应效率的影响。通过单因素试验与正交试验方法,以取代度和反应效率为衡量指标,确定辛烯基琥珀酸荸荠淀粉酯最佳制备工艺。采用最优组合工艺条件制备改性淀粉酯,并与原荸荠淀粉进行理化性质比较分析。结果表明,以取代度为衡量指标,最佳制备工艺条件(优化组合1)为:反应温度40℃,反应时间6 h,pH 8.0,辛烯基琥珀酸酐用量5%,初始淀粉乳浓度40%。该条件下产品取代度为0.022 8,反应效率为59.14%。以反应效率为衡量指标,最佳制备工艺条件(优化组合2)为:反应温度40℃,反应时间6 h,pH 8.0,辛烯基琥珀酸酐用量2%,初始淀粉乳浓度40%。该条件下产品取代度为0.011 4,反应效率为73.75%。理化性质试验结果表明,与天然淀粉相比,优化组合1、优化组合2酯化改性淀粉的透明度,吸水率吸油率、抗老化性、抗凝沉性、冻融稳定性等理化性质均得到明显改善。  相似文献   

16.
以糯玉米淀粉为原料,以α-淀粉酶和葡萄糖淀粉酶复合酶解制备了多孔淀粉,考察了复合酶用量、酶配比、酶解pH、酶解温度和酶解时间对微孔糯玉米淀粉成孔的影响。试验结果表明,上述5个因素对微孔糯玉米淀粉的成孔均有影响。制备微孔糯玉米淀粉的较佳工艺条件为:α-淀粉酶和葡萄糖淀粉酶的比例1∶3,酶解温度55℃,酶解时间12h,pH5.0,复合酶用量1.5%。比较了容积率法与吸油率法测定微孔糯玉米淀粉成孔的一致性,通过扫描电子显微镜分析微孔糯玉米淀粉的孔结构。  相似文献   

17.
以板栗淀粉为原料,用α-淀粉酶和糖化酶协同水解板栗淀粉制备微孔淀粉,研究制备条件对板栗淀粉成孔的影响。结果表明,制备板栗微孔淀粉的最佳工艺条件为:酶解温度60℃,酶解时间20 h,酶解p H 4,酶用量1%,在该条件下所得到的微孔淀粉的吸水率高达162%。采用扫描电子显微镜(SEM)对板栗微孔淀粉的颗粒结构进行分析,表明制备的板栗微孔淀粉表面有孔。  相似文献   

18.
以木薯淀粉为原料,研究羧甲基微孔改性淀粉的制备及其理化性质.利用糖化酶和α-淀粉酶复合处理制备微孔淀粉,然后采用乙醇溶剂法对微孔淀粉进行羧甲基化处理,确定了制备羧甲基微孔改性淀粉的最佳工艺条件;通过X射线衍射、红外光谱和黏度检测研究木薯羧甲基微孔改性淀粉的理化性质,结果表明羧甲基微孔改性淀粉的结晶度提高,羧甲基基团被引入微孔淀粉分子中;对比原淀粉,羧甲基微孔改性淀粉的黏度明显提高,吸水率和吸油率均高于原淀粉.  相似文献   

19.
多孔淀粉是一种新型酶变性淀粉,采用α-淀粉酶和糖化酶复合酶解法制备红薯多孔淀粉,对其工艺条件进行研究,当α-淀粉酶∶糖化酶为1∶7(体积比),反应温度45℃,反应时间28 h,pH5.6,加酶浓度0.5%,淀粉浆浓度65%时,可得到吸油率较高的多孔淀粉。  相似文献   

20.
以玉米淀粉为实验原料,以甲基紫吸附率为响应值,采用Plackett-Burman (PB)和Box-Behnken Design (BBD)法优化复合酶-间歇超声法制备多孔淀粉工艺。同时,用扫描电镜(SEM)对多孔淀粉颗粒的微观形态进行了分析。Box-Behnken响应面法优化结果表明,制备玉米多孔淀粉最佳条件为:水浴加热预处理15 min,底物淀粉浓度33. 33%、酶用量0. 4%(相当于10. 87 IU/g)、酶配比(糖化酶:α-淀粉酶)9:1、pH 5. 0,反应温度50℃、反应时间10 h,超声功率250 W,超声时间29. 83 min,吸附率为62. 42%,是原淀粉对甲基紫吸附率的2. 8倍。电镜微观形态分析显示,多孔淀粉微孔的吸附率变化与其微观结构变化相吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号