首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基于正交设计研究多因素对玄武岩纤维(BF)增强混凝土(BFRC)力学性能的影响并优化其配合比。选取BF长度、BF掺量、减水剂、速凝剂作为试验因素,通过极差分析得出各因素权重关系。利用SEM观察BFRC微观结构,分析BF对混凝土增强的微观机理。结果表明,BF掺量为3kg/m~3时,抗压、抗折强度最大,掺量继续增大,抗压、抗折强度均明显下降;抗压、抗折强度随BF长度增大先上升后下降,长度30mm时最佳;减水剂、速凝剂较前者相比对BFRC力学性能影响不明显。各因素对BFRC 7d抗压与抗折强度影响权重一致,均为BF掺量BF长度减水剂速凝剂,对BFRC 28d抗压、抗折强度影响权重分别为BF长度BF掺量速凝剂减水剂及BF长度BF掺量减水剂速凝剂。当纤维长度为30mm、纤维掺量为3kg/m~3、减水剂为0.7%、速凝剂为10%时,BFRC相对于素混凝土的28d抗压和抗折强度分别提高了21.7%和37.8%。  相似文献   

2.
不同强度等级混凝土尺寸效应试验研究   总被引:1,自引:0,他引:1  
为了研究不同强度等级混凝土强度的尺寸效应,分别对C15、C20和C30等级混凝土,边长分别为100、150和150 mm的立方体试件进行了抗压和劈裂抗拉试验。建立了不同强度等级混凝土抗压与劈裂抗拉强度尺寸效应律的计算式,并通过试验数据验证了其适用性。试验结果表明,混凝土的立方体抗压强度和劈裂抗拉强度均存在尺寸效应,随着强度等级增大尺寸效应显著性逐渐增大;抗拉尺寸效应大于抗压尺寸效应。  相似文献   

3.
为了研究短切玄武岩纤维增强混凝土(BFRC)基本力学性能及其受纤维掺量的影响。通过试验的方法,开展了这种新型复合建筑材料在不同纤维体积掺量情况下的抗劈拉力学性能研究。试验结果表明:混凝土掺入0.05%、0.1%、0.15%、0.2%、0.25%、0.3%六种不同体积含量的玄武岩纤维后,混凝土的坍落度出现不同程度的降低,试件的劈拉强度得到不同程度的提高,且提高幅度与连续玄武岩纤维(CBF)的体积掺量有直接关系。对比直掺法和预处理法两种制备工艺,在条件相同时下,预处理掺入方法所制备的BFRC的增强、增韧效果要优于直掺法制备的BFRC。结论:玄武岩纤维混凝土具有良好的力学性能,纤维的掺量和制备工艺的不同均会在不同程度上影响其抗劈拉性能。  相似文献   

4.
《混凝土》2016,(5)
为了研究短切玄武岩纤维增强混凝土(BFRC)基本力学性能及其受纤维掺量的影响。通过试验的方法,开展了这种新型复合建筑材料在不同纤维体积掺量情况下的抗劈拉力学性能研究。试验结果表明:混凝土掺入0.05%、0.1%、0.15%、0.2%、0.25%、0.3%六种不同体积含量的玄武岩纤维后,混凝土的坍落度出现不同程度的降低,试件的劈拉强度得到不同程度的提高,且提高幅度与连续玄武岩纤维(CBF)的体积掺量有直接关系。对比直掺法和预处理法两种制备工艺,在条件相同时下,预处理掺入方法所制备的BFRC的增强、增韧效果要优于直掺法制备的BFRC。结论:玄武岩纤维混凝土具有良好的力学性能,纤维的掺量和制备工艺的不同均会在不同程度上影响其抗劈拉性能。  相似文献   

5.
《工业建筑》2021,51(8):199-205,178
为探讨冻融循环下的玄武岩纤维增强混凝土(BFRC)断裂损伤和本构软化特性,以5种不同的玄武岩纤维体积百分比掺量(0%,0.1%、0.2%、0.3%和0.4%)设计5组试件,对BFRC试件进行不同次数(0,25,50,75,100,125次)的冻融循环试验,再对混凝土试件进行三点弯曲加载试验。试验结果表明:在0.3%体积掺量以内,玄武岩纤维掺量越高,BFRC的起裂韧度、失稳韧度和断裂能越高;纤维掺量超过0.3%后,BFRC起裂韧度增加不明显而失稳韧度和断裂能略有下降;混凝土冻融损伤降低了混凝土的断裂韧度和断裂能,但玄武岩纤维对混凝土的冻融损伤具有一定的抑制作用,纤维掺量越高,BFRC断裂韧度和断裂能的冻融损失越小。拟合试验数据得到了BFRC的冻融损伤计算模型,在Petersson混凝土双线性软化本构关系的基础上,进一步推导获得冻融循环下的BFRC双线性软化本构关系曲线。  相似文献   

6.
为了研究短切玄武岩纤维混凝土试件尺寸变化对其基本力学性能的影响,对不同纤维长度(15,25 mm)、纤维体积掺量(0.1%,0.2%)、基体混凝土强度等级(C30,C40)的330个短切玄武岩纤维混凝土(BFRC)试件分别进行了立方体抗压强度、轴心抗压强度、劈裂抗拉强度、弯曲抗拉强度试验并对试验数据处理,以尺寸效应度反映尺寸效应规律。研究结果表明:玄武岩纤维混凝土立方体抗压强度试件的尺寸换算系数受混凝土的强度等级、纤维长度、纤维体积掺量的影响较小;轴心抗压强度的尺寸效应随混凝土强度等级、纤维长度、纤维体积掺量的增大均有所提高;劈裂抗拉强度随混凝土强度等级变化,其尺寸效应不明显,但随纤维长度的减小及纤维体积掺量的增加,尺寸效应有增大趋势;混凝土强度等级和纤维长度的改变对混凝土弯曲抗拉强度的尺寸效应影响不大,但随纤维体积掺量的增加,尺寸换算系数先减小后变大。  相似文献   

7.
研究了混杂纤维增强高性能混凝土(HFHPC)与普通混凝土(NC)的高温力学性能,测试了两种混凝土试件在承受常温及200、400、600、800℃高温后的抗压、劈裂抗拉和抗折强度及试件烧失量,采用SEM观察高温后的混凝土微观组织变化。结果表明:混杂纤维可显著提高混凝土的常温及高温力学性能。在所试验温度下的HFHPC混凝土的抗压、劈裂抗拉和抗折强度均高于NC混凝土,且在400℃时,达到最大值。400℃以后,HFHPC混凝土的力学性能随着温度升高而降低,但仍显著高于同温度时NC混凝土的强度值,特别是劈裂抗拉强度的提高尤为明显,至800℃时HFHPC混凝土的抗压、劈裂抗拉、抗折强度分别为同温度时NC混凝土的1.24、4.5和1.61倍。  相似文献   

8.
为了研究高掺量聚丙烯纤维对再生混凝土(RAC)力学性能的影响,对掺量为0.6%、0.9%、1.2%的高掺量聚丙烯纤维RAC(PFRAC)试件的坍落度、抗压、劈裂抗拉及抗折等力学性能进行了试验研究,并对其微观结构进行了观察分析。结果表明:高掺量下,聚丙烯纤维对RAC的流动性具有显著影响。高掺量聚丙烯纤维的掺入使得PFRAC的抗压强度较素RAC略有降低,但减低幅度不大;劈裂抗拉及抗折强度均有不同程度的提高,当纤维掺量为0.9%时,PFRAC试件的抗折强度达到最大值。  相似文献   

9.
为了研究纤维掺入方式和快速养护方式对玄武岩纤维混凝土(BFRC)抗压强度的影响规律,采用对照试验方法,每种方式设计五组配合比,并将试件养护7 d和28 d后进行抗压强度试验,得出最佳掺量值和最佳掺入方式。同时在最佳玄武岩纤维(BF)掺量下,对BFRC试件7 d和28 d试块裂缝出现及发展过程进行数据采集记录;基于素混凝土试件的破坏模式,对BFRC试件破坏形态进行描述。根据试件裂缝出现、发展及破坏时对应的荷载进行对比分析,得出6 kg/m~3玄武岩纤维可以有效改善混凝土抗压强度及受压破坏变形。  相似文献   

10.
设计了5组不同玄武岩纤维体积掺量(0、0.1%、0.2%、0.3%和0.4%)的混凝土试件,并对其进行了冻融循环试验和轴向拉伸试验。结果表明,玄武岩纤维提高了混凝土的轴向拉伸强度,纤维掺量越大,峰值应力越大,峰值应变也相应提高,试件表现出较好的延性破坏特征。冻融循环过程降低了混凝土轴向拉伸强度,而玄武岩纤维可以减弱混凝土的冻融损伤。玄武岩纤维的最佳体积掺量为0.3%。通过对试验数据进行拟合,得到了玄武岩纤维混凝土(BFRC)的轴向拉伸应力-应变本构关系和冻融损伤演化方程,并在此基础上建立了BFRC在冻融环境下的轴向拉伸应力-应变本构模型。  相似文献   

11.
基于高温后强度和变形性能指标评价玄武岩纤维混凝土耐高温性能,分析了不同温度作用后玄武岩纤维掺量的混凝土试件外形特征、质量损失、抗折和抗压强度以及抗压峰值应变,对高温作用后玄武岩纤维混凝土力学性能变化规律进行了探究。试验表明:随温度的升高,玄武岩纤维混凝土抗压和抗折试件的质量逐渐减小;室温至400℃时,玄武岩纤维混凝土抗压强度有所提高而抗折强度迅速下降,抗压峰值应变变化不明显;400~800℃时,随温度的增加,抗压强度与抗折强度快速下降,而抗压峰值应变快速增加。  相似文献   

12.
《混凝土》2016,(8)
分别将钢纤维、聚丙烯纤维按照0.25%、0.5%、0.75%的体积掺加率,以体积比1∶1、1∶2、2∶1混杂后掺入C60混凝土基体中共浇筑30组抗压、抗折、劈裂抗拉试件,通过对其进行抗压、抗折、劈裂抗拉试验研究,分析纤维掺量和混杂比对高强混凝土基本力学性能的影响。结果表明:混杂纤维的掺入降低了混凝土基体的抗压强度,混杂纤维混凝土抗压强度随纤维掺加率增大总体呈下降趋势,相同体积掺加率下,抗压强度随着混杂比中钢纤维掺量的增加亦大致呈逐渐下降的趋势;混杂纤维的掺入对混凝土基体的劈裂抗拉强度有很大改善,混杂纤维混凝土劈裂抗拉强度随着体积掺加率的增加呈先下降后增高的趋势,但随混杂比的规律并不清晰;混杂纤维的掺入对混凝土基体的抗折强度均有较大幅度提高,混杂纤维混凝土抗折强度随纤维掺量的增大呈先升后降的趋势,同体积掺加率情况下,所有混杂比对纤维混凝土抗折强度影响的规律亦不一致。  相似文献   

13.
通过抗拉、抗压及抗弯性能试验,研究了20mm短切玄武岩纤维对喷射混凝土力学性能的影响规律。结果表明,玄武岩纤维体积掺量在3kg/m~3时,玄武岩纤维混凝土的力学性能最优,抗压、抗拉、抗折强度的增幅可达33%、23%、40%,掺量再增加时力学性能下降。端钩型钢纤维掺量为20kg/m~3时对混凝土各项力学性能的增幅仅为6%~8%,其效果弱于最佳掺量的玄武岩纤维混凝土。混凝土开裂后,乱向分布的纤维会将力传递到裂缝两侧的表面,使裂缝的发展得到抑制,试件可以继续受力,玄武岩纤维的桥联作用对抑制湿喷混凝土开裂有较大的帮助。  相似文献   

14.
为研究复合掺合料对快硬混凝土力学性能的改善作用,将不同掺量的复合掺合料加入快硬混凝土中并进行抗压、抗折试验,发现10%左右掺量对混凝土的早期抗压强度,以及后期抗压、抗折强度的改善最为适宜。在此掺量条件下,加入适量的聚丙烯纤维对快硬混凝土早期抗压强度没有明显影响,但对后期的抗折强度影响较大,当聚丙烯纤维掺量为0.2%时,试件的4 h抗压、抗折强度较未改性试件分别提高了4.48%和12.73%,说明此掺量对试件抗折强度的提升作用最为明显。  相似文献   

15.
对聚丙烯-玄武岩混掺纤维按照配合比设计方法设计4组轻骨料混凝土试件,分别进行抗压试验、劈裂抗拉试验、抗折试验,得到了不同混合掺量下聚丙烯、玄武岩纤维轻骨料混凝土的抗压强度、劈裂抗拉强度、抗折强度的变化规律。  相似文献   

16.
通过对16组分别掺入钢纤维和聚丙烯纤维的活性粉末混凝土试件进行抗压、抗折强度试验,并且对每组试件采用了三种不同的养护方案。试验结果表明:热水养护对活性粉末混凝土的抗压和抗折强度有较大幅度的提升,当温度达75℃时,提升幅度10%~30%;相比单掺聚丙烯纤维单掺钢纤维对活性粉末混凝土试块的抗压、抗折强度提升幅度更大,钢纤维含量为4%时活性粉末混凝土的抗压和抗折强度分别提高21%和53%;钢纤维掺量为2%和聚丙烯纤维掺量为0.3%并且经过75℃高温养护的活性粉末混凝土试块其抗压、抗折力学性能达到最优,其抗压强度达到168.4MPa,抗折强度达到31.57MPa。  相似文献   

17.
考察了玄武岩纤维混凝土(basalt fiber reinforced concrete,BFRC)各项力学性能。对BFRC抗压强度值进行数理统计,分析表明:玄武岩纤维长度对BFRC抗压强度无显著影响,体积掺量对BFRC抗压强度有显著影响,两者对BFRC抗压强度值有显著的交互作用。长度18 mm的玄武岩纤维,体积掺量为0.1%时,对BFRC的抗折强度、初裂能耗和破坏能耗增强果最显著。玄武岩纤维能减缓BFRC的早期开裂。  相似文献   

18.
为研究聚乙烯醇(PVA)纤维和碳纳米管(CNTs)对混凝土力学性能的影响,制备了不同PVA纤维和CNTs掺量的混凝土试件来进行抗压、劈裂抗拉以及抗折试验,并通过数字图像相关(DIC)技术对试件在抗折试验下的裂缝扩展进行了全过程监测.结果表明:当PVA纤维体积分数和CNTs质量分数均为0.15%时,混凝土试件的力学性能最优;DIC应变云图直观展示了混凝土试件在抗折试验过程中的裂缝扩展,可以对裂缝的位置以及发育方向进行准确地判别;PVA纤维和CNTs通过桥接作用延缓了水泥基体中微裂缝的发展,改善了混凝土的微观结构,表现出正混杂效应.  相似文献   

19.
通过试验研究了玄武岩纤维掺量对再生粗骨料取代率50%的再生混凝土抗压、劈裂抗拉以及抗折强度的影响,为其在玄武岩纤维再生混凝土(BFRAC)的研究和实际工程应用中提供参考。结果表明:再生粗骨料取代率为50%,玄武岩纤维掺量为6kg/m3时,BFRAC的立方体抗压、轴心抗压、劈裂抗拉、抗折强度较未掺玄武岩纤维的再生混凝土分别提高了12.8%、3.1%、48.8%、10.5%;BFRAC的峰值应变在0.001900~0.002120;BFRAC的单轴受压应力-应变本构关系全曲线与普通混凝土相似,玄武岩纤维对再生混凝土的延性起到积极作用。  相似文献   

20.
为研究混杂掺入钢纤维和聚丙烯纤维对再生混凝土(RAC)力学性能及抗冲击性能的影响,设计制作了素RAC及不同纤维掺量的钢纤维RAC和钢/聚丙烯混杂纤维RAC试件,并对其进行了立方体抗压、劈裂抗拉、抗折强度和抗冲击性能试验研究。试验结果表明:与素RAC相比,掺入钢纤维显著提高了RAC的抗压性能,但混合掺入聚丙烯纤维后其抗压强度有所降低;单掺钢纤维或混杂掺入钢/聚丙烯纤维均提高RAC的劈裂抗拉、抗折和抗冲击性能;与单掺钢纤维相比,混合掺入钢/聚丙烯纤维对RAC的抗拉、抗折和抗冲击性能的改善效果更明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号