共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
3.
基于小波包和SOM神经网络的车辆滚动轴承故障诊断 总被引:1,自引:0,他引:1
以车辆滚动轴承故障诊断模型为基础,针对其轴承的特点,提出了一种小波包分析和SOM神经网络相结合的故障诊断方法。将该方法应用于车辆滚动轴承的故障诊断中,经过大量实测数据的分析与验证,能够有效地诊断出轴承的故障类型,为旋转机械的动态监测和故障诊断提供了新的参考,具有重要的理论和实际工程应用价值。 相似文献
4.
利用小波包分析具有提取图像时、频两域细节和局部特征的能力,提出了将字符图像的小波包分析和BP神经网络相结合以达到识别字符的新方法。该方法首先对字符图像进行小波包分解,然后对分解系数进行重构,求得重构图像的能量;然后提取了不同字符图像的能量构造成能量特征向量,作为神经网络的输入;然后通过选取初始权值、隐层节点数和权值学习算法,创建BP神经网络;最后通过神经网络模型进行训练。实验证实该方法具有识别正确率高、速度快等优点。 相似文献
5.
6.
7.
液压泵源是民机液压系统的动力部分,对于民航飞机飞行的安全起着重要的作用。由于民机液压泵结构复杂,故障机理繁多,因此其故障诊断难以用常规方法实现。提出了基于小波包分解和RBF神经网络的民机液压泵源故障诊断方法。采集民机液压泵轴向和径向的振动信号,利用小波包分解将振动信号进行分解,得到的各频带信号的能量作为神经网络的输入。经过RBF神经网络的计算以实现民机液压泵源的故障诊断。 相似文献
8.
9.
比较详细地阐述了电动机滚动轴承异常产生的机械振动机理,得出了几种常见故障的频率表现.结合实验数据,对所测得的振动信号进行小波包分解,对特定的频率段与正常信号相应的能量进行比对,确定出故障频率,从而准确找出电动机的故障所属. 相似文献
10.
11.
基于小波包特征向量与神经网络的滚动轴承故障诊断 总被引:1,自引:0,他引:1
基于故障轴承的特征提取,提出了将小波包分析与神经网络结合的滚动轴承故障诊断方法.对滚动轴承信号进行3层小波包分解,构造小波包特征向量作为故障样本,用训练好的BP神经网络进行故障诊断,试验结果表明,该方法能够有效地诊断出滚动轴承的故障类型. 相似文献
12.
简述了小波包分析及用于特征提取的机理,以SKF 6326-C3轴承为例,从吉林同发风电场采集了不同工况下的实时信号,利用小波包对滚动轴承振动信号进行分解,振动信号被分解到独立的频段。不同频带内的信号能量变化反映了运行状态的改变,提取各频带小波包能量谱,并对其进行能量归一化处理,作为特征向量,最后应用于基于Kohonen神经网络的故障诊断方法。经对大量实测数据的处理和分析,能够比较准确地诊断出轴承的故障。 相似文献
13.
14.
15.
针对复杂非线性的滚动轴承系统,提出了极点对称模态分解(ESMD)和概率神经网络(PNN)相结合的滚动轴承故障诊断方法。ESMD将固有模态函数的定义进行扩充,采用内部极点对称直接插值的方法替代外部包络线插值,引入最优的自适应全局曲线(AGM)的概念优化分解的趋势线,并由此确定最佳的模态分解次数。PNN是一种基于核函数逼近的神经网络分类器,将指数函数引入神经网络用来替代S型激活函数并进行重新构造,突出体现了梯度最速下降法的概念,减少实际和预测的输出函数之间的误差。通过对经验模态分解(EMD)、屏蔽经验模态分解(MEMD)和ESMD方法进行信号仿真分解对比,以及采用ESMD和PNN对故障数据进行处理,结果表明,该方法能够更加有效地对故障信号进行识别。 相似文献
16.
17.
18.
19.
通过介绍神经网络的模型算法,根据齿轮的四种故障类型,采用BP神经网络对其进行训练和诊断,得到了较为理想的结果,为及早发现和预防机械故障提供了可靠的理论依据。 相似文献