首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
对齿轮振动信号应用小波包分解提取故障特征向量,并以此作为改进BP神经网络的输入,对神经网络进行训练,建立齿轮运行状态分类器,用以诊断齿轮的运行状态。结果表明,该方法对齿轮故障诊断十分有效。  相似文献   

2.
针对滚动轴承的故障诊断,分析滚动轴承故障机理及特点,提出基于小波包分析的滚动轴承振动信号的特征向量提取算法,并建立PSO-Elman神经网络进行故障诊断和识别。将滚动轴承故障振动信号进行小波包分解,构造频带能量谱作为特征向量,输入PSO-Elman神经网络对故障进行识别。试验结果表明,基于小波包分析和PSO-Elman神经网络相结合的方法可准确地实现滚动轴承的故障诊断。  相似文献   

3.
基于小波包和SOM神经网络的车辆滚动轴承故障诊断   总被引:1,自引:0,他引:1  
以车辆滚动轴承故障诊断模型为基础,针对其轴承的特点,提出了一种小波包分析和SOM神经网络相结合的故障诊断方法。将该方法应用于车辆滚动轴承的故障诊断中,经过大量实测数据的分析与验证,能够有效地诊断出轴承的故障类型,为旋转机械的动态监测和故障诊断提供了新的参考,具有重要的理论和实际工程应用价值。  相似文献   

4.
周喜寿  陈天星 《机械》2010,37(3):43-45,71
利用小波包分析具有提取图像时、频两域细节和局部特征的能力,提出了将字符图像的小波包分析和BP神经网络相结合以达到识别字符的新方法。该方法首先对字符图像进行小波包分解,然后对分解系数进行重构,求得重构图像的能量;然后提取了不同字符图像的能量构造成能量特征向量,作为神经网络的输入;然后通过选取初始权值、隐层节点数和权值学习算法,创建BP神经网络;最后通过神经网络模型进行训练。实验证实该方法具有识别正确率高、速度快等优点。  相似文献   

5.
小波包和BP神经网络在齿轮箱故障诊断中的应用   总被引:3,自引:0,他引:3  
研究如何采用处理非平稳性的实用方法以提高监测诊断效率及水平是国内外专家一直研究的课题之一。小波包技术将信号中不同的分量无冗余、无疏漏、正交地分解到独立的频带内,这些频带里的信号能量守衡,每个频带里信号的能量对于状态监测和故障诊断都是十分有用的信息。本文对齿轮箱振动信号应用小波包分解提取故障特征向量,进一步用特征向量训练前向传播BP人工神经网络,建立齿轮运行状态分类器,对齿轮故障进行识别。实验结果表明,本文方法对齿轮箱故障诊断十分有效。  相似文献   

6.
任学平  庞震  辛向志 《轴承》2014,(6):41-44,57
针对轴承振动信号非平稳性及工作情况下难以获得故障频率,提出一种基于改进小波包和总体经验模态分解(EEMD)的轴承故障诊断方法。首先运用改进小波包对振动信号进行分解,得到按顺序排列的子带频带。然后提取故障频率范围的子带信号并进行EEMD,以互相关系数和峭度准则提取故障分量,避免了固有模态函数(IMF)分量选择的盲目性。仿真和试验分析结果表明,该方法能有效且准确地检测出轴承故障。  相似文献   

7.
液压泵源是民机液压系统的动力部分,对于民航飞机飞行的安全起着重要的作用。由于民机液压泵结构复杂,故障机理繁多,因此其故障诊断难以用常规方法实现。提出了基于小波包分解和RBF神经网络的民机液压泵源故障诊断方法。采集民机液压泵轴向和径向的振动信号,利用小波包分解将振动信号进行分解,得到的各频带信号的能量作为神经网络的输入。经过RBF神经网络的计算以实现民机液压泵源的故障诊断。  相似文献   

8.
瞬时功率小波包分解法在轴承故障诊断中的应用   总被引:1,自引:0,他引:1  
王轩  王莉  魏蔚 《轴承》2010,(10)
针对感应电动机轴承故障特征提取的不足,提出了瞬时功率小波包分解的方法。分析电动机单相瞬时功率,发现瞬时功率中故障信息更为丰富,且对故障特征干扰较大的基波可转化为直流分量;滤波后,进行小波包分解,求取故障特征对应子频带小波包分解系数的均方根值及其变换率,并用以表征故障特征,以此作为轴承故障的依据。仿真表明该方法诊断灵敏度高,可用于感应电动机轴承的故障诊断。  相似文献   

9.
比较详细地阐述了电动机滚动轴承异常产生的机械振动机理,得出了几种常见故障的频率表现.结合实验数据,对所测得的振动信号进行小波包分解,对特定的频率段与正常信号相应的能量进行比对,确定出故障频率,从而准确找出电动机的故障所属.  相似文献   

10.
针对强背景噪声下故障特征信号提取难的问题,利用小波包分解能重构信号高低频的特点和频率加权能量算子抗干扰性强的优势,提出基于小波包分解与频率加权能量算子相结合的滚动轴承故障诊断方法。首先运用小波包分解对原始信号进行三层小波包分解,通过计算各个分量的峭度得出最优分解系数;再利用频率加权能量算子追踪信号的瞬时能量并求其包络谱;最后分析包络谱中频率成分并与对应故障特征频率进行对比。仿真信号和实验数据都能证明所提方案的有效性和实用性。  相似文献   

11.
基于小波包特征向量与神经网络的滚动轴承故障诊断   总被引:1,自引:0,他引:1  
刘乐平  林凤涛 《轴承》2008,(4):46-48
基于故障轴承的特征提取,提出了将小波包分析与神经网络结合的滚动轴承故障诊断方法.对滚动轴承信号进行3层小波包分解,构造小波包特征向量作为故障样本,用训练好的BP神经网络进行故障诊断,试验结果表明,该方法能够有效地诊断出滚动轴承的故障类型.  相似文献   

12.
简述了小波包分析及用于特征提取的机理,以SKF 6326-C3轴承为例,从吉林同发风电场采集了不同工况下的实时信号,利用小波包对滚动轴承振动信号进行分解,振动信号被分解到独立的频段。不同频带内的信号能量变化反映了运行状态的改变,提取各频带小波包能量谱,并对其进行能量归一化处理,作为特征向量,最后应用于基于Kohonen神经网络的故障诊断方法。经对大量实测数据的处理和分析,能够比较准确地诊断出轴承的故障。  相似文献   

13.
基于故障轴承的特征提取,提出一种基于小波包与径向基RBF神经网络相结合的故障诊断方法,克服了以往常用诊断方法中的小波BP神经网络网络收敛慢、训练时间长、而且常常陷入局部极小点的缺点。采用小波滤波技术对采集到的滚动轴承振动信号进行滤波处理,利用小波包分解获得滚动轴承振动信号的特征向量作为故障样本对RBF网络进行训练,进行了详细的故障诊断试验研究。实验结果表明训练好的RBF网络能够很好地诊断出轴承故障类型,故本方法在旋转机械故障诊断方面具有良好的应用价值。  相似文献   

14.
在研究改进粒子群算法(IPSO)的基础上,采用IPSO对BP神经网络进行优化,并针对滚动轴承故障诊断问题提出了有效的分析方法。试验结果表明,该算法能够有效地判断出故障类型,与实际期望结果相符合。  相似文献   

15.
针对复杂非线性的滚动轴承系统,提出了极点对称模态分解(ESMD)和概率神经网络(PNN)相结合的滚动轴承故障诊断方法。ESMD将固有模态函数的定义进行扩充,采用内部极点对称直接插值的方法替代外部包络线插值,引入最优的自适应全局曲线(AGM)的概念优化分解的趋势线,并由此确定最佳的模态分解次数。PNN是一种基于核函数逼近的神经网络分类器,将指数函数引入神经网络用来替代S型激活函数并进行重新构造,突出体现了梯度最速下降法的概念,减少实际和预测的输出函数之间的误差。通过对经验模态分解(EMD)、屏蔽经验模态分解(MEMD)和ESMD方法进行信号仿真分解对比,以及采用ESMD和PNN对故障数据进行处理,结果表明,该方法能够更加有效地对故障信号进行识别。  相似文献   

16.
研究了分形理论、小波变换与人工神经网络相结合进行故障诊断的机理与方法。利用小波包可进行多维多分辨率的特性,对振动信号进行分解与重构,提取频带能量特征分析。选用分形理论中的离散信号分形维数计算方法,提取分形维数的特征。以K-L变换作特征降维,然后用基于梯度符号变化的局部学习率自适应误差反传算法的小波神经网络对故障状态进行分类识别。并利用这种方法本文对风机转子故障进行了诊断,结果表明这种诊断方法是完全行之有效的。  相似文献   

17.
通过仿真实例,应用BP和RBF神经网络对滚动轴承的故障诊断进行了比较研究,结果表明,BP网络和RBF网络仿真效果都比较理想,但RBF网络构建简单,训练速度快且比较稳定,体现了RBF神经网络的优越性。  相似文献   

18.
为解决滚动轴承振动信号信噪比低和故障分类准确性不高的问题,提出了小波包最优熵和相关向量机相结合的故障诊断方法。首先采用小波包对采集到的信号进行信噪分离,寻找分解后信号的最优小波包节点熵;然后提取最优节点能量作为训练样本,对相关向量机的多故障分类器进行训练,实现轴承的智能诊断。试验表明,该方法可简单有效地分离噪声,并具有良好的分类能力,可以很好地应用于轴承故障诊断。  相似文献   

19.
通过介绍神经网络的模型算法,根据齿轮的四种故障类型,采用BP神经网络对其进行训练和诊断,得到了较为理想的结果,为及早发现和预防机械故障提供了可靠的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号