首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
采用光学显微镜(LM)、X衍射仪(XRD)、差示热量扫描仪(DSC)对直链淀粉含量不同的米淀粉(0.83%的优糯3号、10.90%水白晶珍珠米、21.03%聚两优、28.46%华优香占)的颗粒形貌、结晶性质、热力学性质进行观察,并对4种淀粉的冻融稳定性进行了研究。结果表明,直链淀粉含量不同的米淀粉颗粒形貌差异不大,均呈现不规则多边形,典型的A晶型,淀粉的相对结晶度随着直链淀粉含量的增加而减小,淀粉的糊化初始温度(To)、峰值温度(Tp)、糊化终点温度(Tc)、糊化焓值(△H)随着直链淀粉含量的增加而升高,淀粉的冻融稳定性随直链淀粉含量的增加而增加。  相似文献   

2.
以4种不同链/支比含量的玉米淀粉为原料,酸解处理不同时间,以酸解玉米淀粉的形貌特性、冻融稳定性、膨胀度、溶解度、晶体性质为指标衡量不同酸解时间对玉米淀粉结构性质的影响。结果表明:4种玉米淀粉酸水解程度的顺序为:蜡质玉米普通玉米淀粉G50G80。酸解后,同品种的4种玉米淀粉的析水率随着酸解天数的增加而增加;溶解度增加,膨胀度降低。酸解并未改变淀粉的晶型,随着酸解时间的延长,蜡质玉米淀粉和普通玉米的相对结晶度先增大后保持不变,G50和G80的相对结晶度随着酸解时间的增加而增大。表明酸解对低直链淀粉(蜡质玉米淀粉和普通玉米淀粉)的结构、性能影响最大。  相似文献   

3.
《粮食与油脂》2016,(11):46-48
以3个不同品种的大米为原料,采用链霉蛋白酶酶法提取高纯度大米淀粉,并对大米淀粉的主要成分、酶解力、破损率、黏滞特性和质构特性进行分析。结果表明,采用链霉蛋白酶酶法制备,可使不同品种大米淀粉的总淀粉含量均达到94%以上。不同品种大米淀粉的酶解力:吉粳88鄂糯9号金优207;颗粒破损率:鄂糯9号金优207吉粳88;凝胶硬度:金优207吉粳88鄂糯9号;凝胶黏度:鄂糯9号吉粳88金优207。  相似文献   

4.
不同链淀粉含量玉米微晶淀粉理化性质研究   总被引:2,自引:1,他引:2  
分别以蜡质玉米淀粉、玉米淀粉及高直链玉米淀粉为原料,在酸醇介质中制备不同水解率微晶淀粉,测定不同微晶淀粉水解性能并研究其颗粒形貌、结晶结构、溶解度及消化性。结果表明:淀粉颗粒内部结构致密性依次减弱,支链淀粉含量高的淀粉较易被试剂进攻;经酸醇处理后,三种微晶淀粉均保留原来晶型,颗粒形态没明显变化,没破碎和膨胀出现,但颗粒表面变粗糙;随直链淀粉含量增加,相似条件(水解率和温度)淀粉溶解度逐渐降低;in-vitro消化体系中三种淀粉及其微晶淀粉消化速度依次降低。  相似文献   

5.
不同直链淀粉含量大米淀粉性质的研究   总被引:1,自引:0,他引:1  
以4种不同直链淀粉含量的米淀粉为原料,采用扫描电镜(SEM)、全波长自动扫描仪,质构仪等对其颗粒形貌、淀粉-碘复合物性质、ATP指标及透明度性质进行观察研究。结果表明,不同直链淀粉含量的大米淀粉颗粒形貌差异不大,均呈现不规则多边形,表面不光滑;随着直链淀粉含量的增加,淀粉颗粒的平均链长和聚合度不断增大,优糯3号淀粉颗粒内部短链数量较多,随着直链淀粉含量的增加淀粉颗粒内部的长短链比率逐渐趋近于1;淀粉糊的质构性质测定显示出淀粉糊的硬度、胶着性和咀嚼性随着直链淀粉含量的增加呈现出明显的上升趋势,弹性随着直链淀粉含量的增加变化不大,而凝胶的粘聚性明显下降;糊透明度随直链淀粉含量的增大而不断降低。  相似文献   

6.
不同物理方法处理对碎米中淀粉特性的影响   总被引:1,自引:0,他引:1  
吴琼  柳溪 《中国酿造》2016,35(1):105
采用挤压、微波、超声波三种物理方法对水分含量18%的碎米淀粉进行处理,研究分析碎米淀粉经物理方法处理前后的理化性质和结构变化。结果表明,碎米淀粉经微波和超声处理后酶解力增加,糊化黏度下降,而溶解度、膨胀力、糊化温度和直链淀粉含量变化不显著;两种淀粉颗粒表面棱角减少,淀粉颗粒晶型基本没有发生变化,淀粉结晶区降低。挤压后的碎米淀粉变化较大,颗粒形状为片状,凝沉性强,1.0 h后体积仅为3 mL,糊化温度明显降低至55.0 ℃,直链淀粉含量增长为30.75%,溶解度强,为0.59%,酶解力达到45%,X-射线主要衍射峰的强度降低。  相似文献   

7.
青稞淀粉理化特性的研究   总被引:5,自引:3,他引:2  
研究了4种青稞淀粉(林周148、北青6号、昆仑6号、藏青320)的理化特性,研究发现:不同品种的青稞淀粉在基本组分上存在差异,淀粉颗粒的平均粒径在17.49~18.13μm之间;青稞淀粉糊的透明度随着放置时间的延长而减小;溶解度和膨胀力都随着温度的升高而增大,总体上,青稞淀粉的溶解度与直链淀粉含量呈正相关性,膨胀力与直链淀粉含量呈负相关性,淀粉糊的溶解度和膨胀力还受到淀粉颗粒大小的制约;青稞淀粉糊的冻融稳定性与直链淀粉含量呈负相关性;青稞淀粉的峰值黏度与溶解度呈负相关性,糊化温度与膨胀力呈负相关性。在液化后,青稞淀粉的DE值在17.55~19.33之间;糖化后,DE值在80.04~90.14之间;青稞淀粉酶解后DE值存在差异与淀粉颗粒大小分布和破损淀粉含量有关。  相似文献   

8.
为揭示粳性、糯性糜子淀粉的理化特性及其差异,本文选用2个粳性糜子、2个糯性糜子品种为试验材料,以玉米淀粉、马铃薯淀粉为对照,研究比较了其淀粉的颗粒形态与大小、晶体结构、直链淀粉含量、透明度、冻融稳定性等理化性质。结果表明:粳性、糯性糜子淀粉颗粒形态均呈棱角圆滑的多面体形或球形,平均粒径分别为7.18 μm、6.04 μm,结晶构型均为A型;粳性糜子淀粉直链淀粉含量、冻融析水率高于糯性糜子淀粉,而透光率较低;粳性、糯性糜子淀粉的溶解度与膨胀度均随温度升高而增大,前者的溶解度、膨胀度较低;粳性糜子淀粉破损值低,热糊稳定性好,而糯性糜子淀粉的回生值低,冷糊稳定性好。因此,糜子淀粉可作为一种新型的淀粉资源应用于不同领域。  相似文献   

9.
采用不同的加热时间对大米进行处理,并从加热处理过的大米中提取淀粉,采用电镜扫描仪、差示扫描量热仪、质构仪、流变仪等检测仪器研究加热时间对大米淀粉的颗粒形貌、热力学性质、凝胶特性、流变等性质的影响,采用酶解法测定加热处理过的大米中抗性淀粉的含量。结果表明:随着加热时间的延长,淀粉的膨润力与溶解度先增大后减小;加热时间在0~10min 时,抗性淀粉含量减少,其范围为18.01%~8.10%;淀粉颗粒由单个独立的颗粒逐渐膨胀至相互粘连,糊化焓值降低;硬度、延伸性等都有不同程度的变化;淀粉糊的剪切稳定性降低。  相似文献   

10.
糯小麦淀粉品质特性研究   总被引:1,自引:0,他引:1  
以糯小麦5017为材料,小偃6号作对照,对糯小麦A、B淀粉的直链淀粉含量及其他淀粉品质特性进行了研究.结果表明,糯小麦淀粉颗粒呈现明显的偏光十字,且A淀粉粒大于B淀粉粒;糯小麦A、B淀粉直链淀粉含量极低,分别为2.81%、0.30%,其直链淀粉含量的大幅度降低导致膨胀特性发生了改变;糯小麦淀粉糊对热不稳定,且不易形成凝胶,老化速度慢,糊透明度不高,但冻融稳定性较好.  相似文献   

11.
Acid thinned jicama and maize starches as fat substitute in stirred yogurt   总被引:1,自引:0,他引:1  
Jicama and maize starches were hydrolyzed with HCl (1.5, 3.0 or 4.5 g/100 g of starch), at a temperature of 40 °C using two hydrolysis times (3 and 6 h). The acid degradation of both starches was not excessive as revealed by the positive blue value, amylose content, gel formation and gel thermo-reversibility. Jicama starches were more susceptible to acid hydrolysis than maize starches. Hydrolyzed jicama starches showed low values of gel strength and water solubility index, and high values of damaged starch, total sugar content and water absorption index. Stirred yogurt formulated with hydrolyzed starches showed different properties of syneresis index according to the starch type and hydrolysis conditions. Yogurt samples with hydrolyzed jicama starches added did not show significant differences in pH and viscosity. Sensorial testing showed that it is possible to produce yogurt with good functional and sensorial properties using hydrolyzed jicama starches as a fat substitute.  相似文献   

12.
Comparative studies on acid hydrolysis of jicama and maize starch were carried out using concentrations of hydrochloric acid of 1.5%, 3.0%, and 4.5% (w/v), for 3 and 6 h, at 40°C. Native maize and jicama starches showed important morphological, thermal, and structural differences from those of tubers and cereals which potentially offer diverse industrial applications. Jicama starch showed low amylose content (12%) and small size of starch granules. Due to these characteristics, jicama starch was more susceptible to degradation during hydrolysis process than maize starch. Under the experimental conditions employed, the acid degradation was not particularly severe, as shown by scanning electronic microscopy analysis which showed small degraded zones and similar X-ray patterns in both starches. However, jicama starch was more susceptible to acid hydrolysis than maize starch, as revealed by the considerable increase in water solubility index, damaged starch, and crystallinity values. Also, the higher susceptibility of jicama starch than maize starch to the hydrolysis conditions was reflected in the sugar content release during hydrolysis. The relative crystallinity of hydrolyzed maize starches decreased during hydrolysis, while those of hydrolyzed jicama starches increased attributable to the lower amylose content of jicama starch in relation to maize starch. Maize and jicama hydrolyzed starches showed low viscosity values with relation to their native starch counterparts. However, native jicama starch showed lower viscosity values than maize starch, suggesting a lower internal stability of the starch granules during hydrolysis. Both native and hydrolyzed maize starches showed higher enthalpy, T o, T p, and T c values than jicama starch and the broadening of the endotherms decreased during the hydrolysis of both starches.  相似文献   

13.
Two banana starches were studied to analyze the effect of the acid hydrolysis on their molecular structure, and the impact in their physicochemical features. The native banana starches exhibit differences in the amylose content, molar mass, gelatinization parameters, X-ray diffraction pattern, and pasting profile. These results suggested that different acid hydrolysis mechanisms may be operative in these two starches. The kinetic hydrolysis is different in both banana starches that are related to the crystalline packing of the starch molecules. This was confirmed by the amylose content, the X-ray diffraction pattern, and the thermal study in the acid hydrolyzed starches at different times. The acid-treated Roatan starch showed higher retrogradation than Macho starch, a phenomenon that increases in the sample hydrolyzed for the longer time. This pattern is related to the amylose/amylopectin ratio, the reduction in the molar mass and the gyration radius. The acid hydrolysis of banana starches, although they have some similarities, they are different.  相似文献   

14.
Acid modified, agglomerated starches offer specific advantages as fillers in production of pharmaceutical tablets. Spray drying can improve processing of tablet mixtures significantly. In order to investigate prerequisites in utilization of rice starch, non‐waxy and waxy types were partially hydrolyzed in 6% (w/v) HCl solution at room temperature for varied length of time to obtain rice starches with increased crystallinity (so‐called crystalline rice starches). Scanning electron micrographs of native and highly crystalline starches were used to study the morphological changes and to suggest the mode of acid attack during hydrolysis. Exo‐corrosion distributed over the surface of acid‐modified waxy rice starch (AWRS) was observed after 192 h of hydrolysis. In contrast, the surface of acid‐modified rice starch (ARS) remained unchanged at 192 h of acid hydrolysis. The amylose content and the median particle size (diameter) were reduced with increasing hydrolysis time. It was found by X‐ray diffraction that the relative crystallinity of acid‐modified starches at >95% relative humidity was clearly increased with prolonged hydrolysis time. For studying tablet properties spherical agglomerates of the native and acid modified starches were directly compressed at 4 kN to obtain tablets. Crushing strength and disintegration time of tablets increased with relative crystallinity. In contrast, tablet friability was reduced. Concerning tablet functionality, the crystalline starches were positioned in overlapping ranges between the common commercial tablet fillers (microcrystalline cellulose, pregelatinized starch and lactose, respectively).  相似文献   

15.
BACKGROUND: The granules of amaranth starch are very small compared with starches from other sources. In the current work, amaranth starches with different amylose contents were treated with hydrochloric acid as a function of time in order to study the effect of acid treatments on starches. Differential scanning calorimetry and dynamic oscillation in shear were employed to analyse the thermal and rheological properties of acid‐modified amaranth starch. RESULTS: Results showed that gelatinisation temperatures and enthalpy change of gelatinisation (ΔH) decreased steeply initially, and had a slight increase with further treatment up to 12 h then decreased, an outcome that reflected distinct resistance to acid with various amylose contents. Rheological parameters of storage and loss moduli during heating, cooling and frequency sweep of modified starches reflected the differential scanning calorimetry results by decreasing in value as the time of acid hydrolysis increased. CONCLUSION: With amylose content increase, the effects of acid hydrolysis on gelatinisation temperatures became less pronounced. Nevertheless, prolonged acid hydrolysis decreased the storage and loss moduli, with the starch pastes becoming more liquid‐like. Copyright © 2012 Society of Chemical Industry  相似文献   

16.
Abstract: Rice starch is one of the major cereal starches with novel functional properties. Significant progress has been made in recent years on the characterization of rice starches separated from different rice cultivars. Studies have revealed that the molecular structure and functional properties are affected by rice germplasm, isolation procedure, climate, agronomic conditions, and grain development. Morphological studies (microscopy and particle size analysis) have reflected significant differences among rice starch granule shapes (polyhedral, irregular) and in granule size (2 to 7 μm). Nonwaxy and long‐grain rice starches show greater variation in granular size than the waxy starches. Rice starch granules are smaller than other cereal starches with amylose contents varying from virtually amylose‐free in waxy to about 35% in nonwaxy and long‐grain rice starches. Amylose content appears to be the major factor controlling almost all physicochemical properties of rice starch due to its influence on pasting, gelatinization, retrogradation, syneresis, and other functional properties. Waxy rice starches have high swelling and solubility parameters, and larger relative crystallinity values than nonwaxy and long‐grain starches. However, nonwaxy rice starches have a higher gelatinization temperature than the waxy and long‐grain starches. The bland taste, nonallergenicity, and smooth, creamy, and spreadable characteristics of rice starch make it unique and valuable in food and pharmaceutical applications. This review provides recent information on the variation in the molecular structure and functional properties of different rice starches.  相似文献   

17.
The structures and physicochemical properties of acid‐thinned corn, potato, and rice starches were investigated. Corn, potato, and rice starches were hydrolyzed with 0.14 N hydrochloric acid at 50 °C until reaching a target pasting peak of 200—300 Brabender Units (BU) at 10% solids in the Brabender Visco Amylograph. After acid modification the amylose content decreased slightly and all starches retained their native crystallinity pattern. Acid primarily attacked the amorphous regions within the starch granule and both amylose and amylopectin were hydrolyzed simultaneously by acid. Acid modification decreased the longer chain fraction and increased the shorter chain fraction of corn and rice starches but increased the longer chain fraction and decreased the shorter chain fraction of potato starch, as measured by high‐performance size‐exclusion chromatography. Acid‐thinned potato starches produced much firmer gels than did acid‐thinned corn and rice starches, possibly due to potato starch's relatively higher percentage of long branch chains (degree of polymerization 13—24) in amylopectin. The short‐term development of gel structure by acid‐thinned starches was dependent on amylose content, whereas the long‐term gel strength appeared dependend on the long branch chains in amylopectin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号