首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
离心泵叶顶泄漏涡结构特性研究   总被引:3,自引:3,他引:0  
叶顶间隙产生的泄漏涡会对半开式离心泵性能产生不利影响,为了探究不同流量工况下泄漏涡结构及其运动轨迹的变化规律,本文采用SST k-ω湍流模型对半开式离心泵进行全流道数值模拟,分析了泄漏涡的结构特征和泄漏流速度分布,改进了泄漏涡运动轨迹预测模型。结果表明,数值模拟值得到的外特性与试验值吻合较好;叶顶泄漏流相对速度的弦向分量的最小值出现的位置与泄漏涡的初始位置重合,并且随着流量的减小向上游移动。叶片进口边负的弦向分量导致回流的形成,而法向分量的增大是导致小流量工况前缘溢流和大流量工况叶片尾缘二次泄漏流的根本原因。叶顶间隙内速度梯度较大的泄漏流会引发高熵产,并且与主流混掺形成泄漏涡,在泄漏涡周围同样引发高熵产,高熵产区面积随着流量的减小而增大。改进轨迹预测模型用叶顶间隙进口的平均速度代替了原先叶轮进口平均速度,扩展了预测范围,减小了预测结果的误差,说明改进模型能够很好地预测泄漏涡核的迁移轨迹。  相似文献   

2.
叶顶间隙对轴流泵轮缘泄漏流动影响的大涡模拟   总被引:4,自引:1,他引:3  
为揭示不同尺寸叶顶间隙下轴流泵轮缘区湍流特征,采用大涡模拟方法对轴流泵在设计流量下的内部非定常流动进行了数值计算,分析了5种叶顶间隙下泵轮缘间隙区的流场结构。通过泵外特性参数预测值与实验结果的对比,证实本文所提出的方法可较准确反映泵内流动特征。结果表明:随轮缘间隙增加,泵扬程、功率和效率均呈下降趋势;叶顶间隙内泄漏流速度沿径向逐渐增大;随间隙尺寸增加,轮缘间隙主泄漏涡强度及与叶片夹角均增大,泄漏涡的非稳定性增强;当间隙δ/D2大于1.0‰,间隙主泄漏涡发展至相邻叶片正面;当δ/D2大于1.5‰,叶顶间隙内出现间隙分离涡,间隙区形成多个次泄漏涡,其影响范围随间隙尺寸的增加而增大。  相似文献   

3.
为了研究大流量工况下高速潜水轴流泵的空化特性,基于ANSYS CFX软件,选取Zwart、Kunz以及Schnerr-Sauer 3种空化模型进行大流量工况下高速潜水轴流泵外特性和泵内空化流动特性数值模拟。结果表明:大流量工况下Schnerr-Sauer空化模型预测的外特性变化趋势与试验值最为吻合,相较于另两种空化模型,Schnerr-Sauer空化模型模拟的叶片背面空泡体积分数较高;空化严重区域主要出现在叶片背面进口附近以及叶顶,同一空化数下,流量越大,叶片空化状况越严重;叶片载荷分布由叶片进口边到出口边呈先增大后减小的趋势;各流量下空泡首先出现在叶片背面进口前缘位置,随着空化数的减小,空泡体积分数沿着主流方向朝叶片后缘不断增大直至空泡占据整个叶片背面;叶片背面处的三角形云状空化尾缘空穴极不稳定,随着叶轮旋转,尾缘处空泡微团逐渐脱落,朝着相邻叶片不断移动,对相邻叶片的工作面产生侵蚀破坏,导致叶片载荷发生变化,对轴流泵水力性能产生影响。  相似文献   

4.
为分析大流量工况下轴流泵叶顶区空化流场特性,采用修正的空化模型和SST k-ω湍流模型以及结构化网格技术,对南水北调工程某一轴流泵模型叶顶区流场进行数值模拟,并分析其大流量工况下叶顶间隙内的轴向速度和湍动能分布特性,揭示了叶片不同弦长截面的空穴分布和压力场的关联性。采用高速摄影技术,对叶顶区不同空化数下的空化流场进行实验测量,并与数值计算结果进行对比分析。研究结果表明,叶轮叶顶区空化主要分布在叶顶间隙区、泄漏涡卷吸区和涡带区域。在大流量工况下叶顶区空泡分布起始于叶顶叶片弦长中间位置,随着叶顶翼型弦长系数的增加,由叶顶角涡引起的间隙空化从叶顶压力面拐角处发起,并覆盖叶顶间隙区;泄漏涡空化区随着泄漏涡的产生、增强和耗散,与之对应也具有空化初生、发展和溃灭的过程。在大流量空化严重工况下,流动分离诱导叶片压力面前缘约50%区域出现片状空化,叶片吸力面中后部也形成了片状附着空化,同时叶顶区刮起涡空泡、泄漏流空泡和叶顶泄漏涡空化涡带并存,严重堵塞了叶轮流道。  相似文献   

5.
为了研究竖井贯流泵流动损失特性,基于URANS方法,采用FBM-CC湍流模型对竖井贯流泵内部流场进行了非定常计算,并利用熵产理论对不同流量工况下竖井贯流泵各部件的流动损失特性进行了定量分析。结果表明:FBM-CC湍流模型能够有效预测竖井贯流泵水力性能,与试验结果较为吻合;竖井贯流泵流动损失从大到小依次为叶轮段、出水流道、导叶体、进水流道;叶轮段能量损失的主要来源是湍流耗散,其熵产比率最高可达92%;涡流和流动分离导致出现局部高熵产区域;临界失速工况叶轮轮毂处存在大量涡流,轮缘处流动相对较稳定;深度失速工况受叶顶间隙泄漏流影响,叶轮进口轮缘处出现流动分离,随着流量进一步减小进水流道流态受到影响,叶片前缘出现分离涡。  相似文献   

6.
为研究轴流泵输送含沙水流时的工作性能,基于Euler多相流模型、RNG k-ε湍流模型与SIMPLEC算法,对轴流泵装置内固液两相流动进行数值模拟。重点分析了0.8、1.0和1.2倍设计流量条件下轴流泵装置在含沙工况和清水工况的能量性能和流态差别。同时,进一步探究了不同固相颗粒直径和浓度对装置内部固液两相流动的影响规律。结果表明:同一流量条件下,含沙工况下的泵装置效率和扬程都比清水工况低,且导叶体和出水流道流态较清水工况差;随着固相颗粒直径的增加,叶轮叶片壁面处颗粒体积分数逐渐增大,且颗粒体积分布均匀性越差,固相颗粒主要集中于叶片压力面进口处及吸力面靠近轮缘处;而随着颗粒浓度的增大,叶片表面及导叶表面固相颗粒分布的均匀度变差,固相颗粒主要分布于靠近叶片压力面进口处、吸力面靠近轮缘处,导叶处流态变差。研究结果可为轴流泵装置的优化设计提供一定参考。  相似文献   

7.
目前喷水推进技术日趋成熟,应用广泛,而喷水推进泵叶顶间隙流场复杂,亟待忖度。该文以ONR AxWJ-2喷水推进泵为研究对象,基于FBM-CC模型对不同流量工况进行非定常计算,通过对其外特性、内部流场及涡量场的分析,研究喷水推进泵叶顶间隙泄漏流动特性。结果表明:FBM-CC模型可以有效预测喷水推进泵的水力性能;随着流量增大,叶片正背面压差增大,促进了主泄漏涡的发展,同时吸力面的卷吸作用增强;主泄漏涡受到主流的阻力作用,湍动能大量耗散,而二次泄漏涡是由吸力面低压引起的主动回旋,旋转率不强,也不直接与主流相互作用;根据涡量输运方程,涡拉伸项(VST)对泄漏涡的涡量变化率影响较大,科氏力项(CORF)影响泄漏涡的初始位置,黏性扩散项(VIST)对叶顶处泄漏涡的发展产生影响。  相似文献   

8.
采用基于CFD数值模拟计算的方法研究叶轮叶片数和导叶叶片数对轴流泵水力性能的影响。对轴流泵的水力性能曲线进行数值计算并分析。结果表明,轴流泵的扬程随着叶轮叶片数的增加而增加,但并不是严格随着叶片的多少成比例升高,轴流泵效率随着叶轮叶片数的减小而增大,必需汽蚀余量随着叶轮叶片数的减小而增大。不同导叶叶片数下泵段扬程基本保持一致,说明导叶在进行配套设计完成后,单改叶片数对扬程影响很小,但是对效率影响较大,特别是大流量工况叶片数越多,效率越低。  相似文献   

9.
为研究水泵水轮机在泵工况下的内部流态变化对压力脉动和转轮叶片受力的影响,采用 SAS-SST 湍流模型对某一模型水泵水轮机的多个非设计工况进行非定常数值模拟,分析了水轮机 内部流态对导叶与转轮之间无叶区、尾水管内的压力脉动和转轮叶片径向受力的影响。结果表明: 在流量为 40% ~80%设计流量时,导叶区内产生旋转失速,转失速涡团初生于固定导叶进口,并随着流量的降低向活动导叶进口发展,且覆盖区域逐渐增大。旋转失速使压力和过流沿周向不均匀分布, 导致压力脉动和转轮径向受力波动大幅上升。在40%设计流量时,失速涡团发展最为充分,无叶区 压力脉动和转轮受力波动的低频分量幅值最高。旋转失速产生的低频脉动可向尾水管传播,形成的低 频压力脉动幅值约为无叶区低频脉动幅值的10%。当流量低于 40%设计流量时,导叶区旋转失速消失,复杂的涡结构形成的压力脉动低频成分没有周期性。此外,转轮进口的流动分离使尾水管内产生复杂的回流涡结构,导致尾水管内形成频谱丰富的压力脉动; 流量降低使转轮进口回流涡结构的湍动 能增加,导致尾水管内压力脉动幅值大幅上升。小流量工况下,转轮进口的涡结构演变是转轮径向力波动的主要影响因素。  相似文献   

10.
为研究水泵水轮机在泵工况下的内部流态变化对压力脉动和转轮叶片受力的影响,采用SAS-SST湍流模型对某一模型水泵水轮机的多个非设计工况进行非定常数值模拟,分析了水轮机内部流态对导叶与转轮之间无叶区、尾水管内的压力脉动和转轮叶片径向受力的影响。结果表明:在流量为40%~80%设计流量时,导叶区内产生旋转失速,转失速涡团初生于固定导叶进口,并随着流量的降低向活动导叶进口发展,且覆盖区域逐渐增大。旋转失速使压力和过流沿周向不均匀分布,导致压力脉动和转轮径向受力波动大幅上升。在40%设计流量时,失速涡团发展最为充分,无叶区压力脉动和转轮受力波动的低频分量幅值最高。旋转失速产生的低频脉动可向尾水管传播,形成的低频压力脉动幅值约为无叶区低频脉动幅值的10%。当流量低于40%设计流量时,导叶区旋转失速消失,复杂的涡结构形成的压力脉动低频成分没有周期性。此外,转轮进口的流动分离使尾水管内产生复杂的回流涡结构,导致尾水管内形成频谱丰富的压力脉动;流量降低使转轮进口回流涡结构的湍动能增加,导致尾水管内压力脉动幅值大幅上升。小流量工况下,转轮进口的涡结构演变是转轮径向力波动的主要影响因素。  相似文献   

11.
为了解口环间隙尺寸对高速多级深井泵内部流动特性的影响,采用SST k-ω 湍流模型和精细化网格,研究了口环间隙对泵内部流场的影响,基于熵产理论详细分析了不同口环间隙尺寸下泵内部的泄漏流损失特性。结果表明:随着口环间隙尺寸的增大,泵的扬程、效率呈下降趋势;泄漏量的增加使得叶轮入口处的流态恶化加剧,但口环间隙尺寸增加到一定范围时,泄漏量的增加会有所减缓;湍流耗散熵产是泵流动损失的主要部分,腔体和叶轮进口是产生流动损失的主要区域,口环间隙尺寸对腔体内部的旋涡特性影响不大,但对叶轮进口和叶轮流道内的旋涡强度影响明显。  相似文献   

12.
为了阐明斜流泵小流量工况下近叶顶间隙区域的压力脉动特性,揭示不同叶顶间隙RTC对斜流泵瞬态运行稳定性的影响,对斜流泵模型进行非定常数值模拟。选取叶顶间隙RTC分别为0、0.5、1和1.5 mm的4种方案,基于LES大涡模拟、SIMPLEC算法与结构化网格,通过压力脉动频谱分析,了解RTC与近叶顶间隙区域压力脉动的内在关系。结果表明,RTC引起的泄漏流与主流掺混加剧了叶顶间隙区域流动的不稳定性,降低了叶片的做功能力;较大的RTC可以有效减少叶顶间隙区域的高频压力脉动,但引起的泄漏流加剧;随着RTC的增大,叶轮近壁区压力脉动平均值逐渐减小,水力性能下降。斜流泵设计时,选取适当小的RTC可以提高斜流泵的整体水力性能。  相似文献   

13.
轴流泵不稳定流场的压力脉动特性研究   总被引:28,自引:0,他引:28  
王福军  张玲  张志民 《水利学报》2007,38(8):1003-1009
流场压力脉动是影响大型轴流泵运行稳定性的关键因素,本文采用时间相关的瞬态流分析理论及大涡模拟方法研究轴流泵内部非定常流动,得到了不同工况下泵内水压力脉动结果。通过与实测扬程和功率对比,证明本文所提出的方法可较准确地反映泵的流动特征。研究表明,轴流泵内最大压力脉动发生在叶轮进口前,压力脉动频率主要受叶轮转频控制;在叶轮进口与出口处,从轮毂到轮缘压力脉动逐渐增大,而在导叶中间及导叶出口处,结果正好相反。偏离最优工况越远,脉动的相对振幅越大,在60%流量工况下泵内压力脉动约为最优工况的2倍。  相似文献   

14.
该文以气液两相三级混输泵为研究对象,基于数值模拟研究了不同含气率下叶顶间隙对混输泵外特性、内流场、载荷分布及气相分布的影响,并通过与实验对比验证了数值模拟是可靠的。主要结果表明:随着叶顶间隙增大,混输泵扬程和效率均呈现下降趋势,纯水工况相较20%含气率工况下降幅度更加显著;虽然叶顶泄漏现象随着间隙值的增大逐渐加剧,但20%含气率时大间隙下叶顶间隙内流动比小间隙模型更加平稳;叶顶间隙使得叶片表面压力分布发生变化,含气率小于10%时,随着间隙值的增大叶片表面静压逐渐降低。当含气率大于10%以后,其变化较为混乱;合理的叶顶间隙能有效改善叶轮内的气相分布。就该文所研究的混输泵而言,叶顶间隙小于0.28%D(叶轮直径)时,随着间隙值增大叶轮内的气相分布越均匀。  相似文献   

15.
基于CFX软件和RNG k-ε湍流模型,研究了不同流量和不同进口压力条件下泵内空化流动的特性。通过Rayleigh-Plesset方程均相流动空化模型分析了叶轮内的空泡数与叶轮扭矩随空化系数变化的关系,空化的初生、主要位置和流道的静压变化特性。结果表明:空泡体积随空化系数的减小而增大,空化初生在叶片前缘及附近流道。随着进口压力的减小,诱发空化的低压区主要集中于叶片与流道的中部且压力分布不均匀。各小流量工况下,扭矩变化随着空化系数的减小而减小,在空化系数较大时,不同工况下的扭矩均会有不规则波动且各曲线变化临界点会随着流量的增加逐渐向前移动,但总体变化趋势大致相同。本文研究的微型高速泵内空化流场的特性及空化对泵稳定运行性能的影响可供设计较高运行效率的微型高速离心泵参考。  相似文献   

16.
利用RNGh紊流模型封闭时均N—S方程组,对一组对角泵叶轮的内部三维流动进行了数值模拟,在分析基本流态的基础上,对对角泵叶轮的能量特性进行了预测和比较。计算结果表明,对应于不同的叶片夹角,对角泵叶轮的能量性能差异很大。轴流泵叶片对角布置后,离心力的作用使对角泵叶轮的扬程提高,使得叶轮的最优比转数随叶片夹角的减小而减小。随着叶片夹角和流量的减小,对角泵叶轮的功率不是增加而是减小,功率特性由轴流泵逐步向离心泵过渡。与对应的轴流泵相比,对角泵的最优效率点向小流量方向偏移,但高效区变宽。叶片夹角为150。的对角泵叶轮的流量加权平均效率比对应的轴流泵叶轮高0.82%。因此,选择优秀的水泵水力模型,通过优化叶片夹角、叶轮室及轮毂的形状和尺寸,能够改善和提高对角泵叶轮的能量特性。  相似文献   

17.
为有效抑制竖井贯流泵水力不稳定马鞍区的产生,该文基于URANS方法和FBM-CC湍流模型,开展了沟槽控制技术改善竖井贯流泵水力不稳定特性研究。在深度失速工况下,采用正交试验方法优选出显著改善竖井贯流泵水力性能的沟槽控制技术方案,利用边界涡量动力学和熵产理论深入研究沟槽控制技术改善竖井贯流泵水力不稳定特性的机理。研究结果表明:沟槽控制技术能够有效抑制马鞍区工况下叶顶间隙泄漏涡和叶片表面的流动分离,改善了叶片表面的边界涡量流(BVF)均匀分布情况,提高了叶轮的做功能力以及降低了叶轮区域的水力损失,显著提升了竖井贯流泵的水力性能,其中在深度失速工况时,扬程和效率分别提高了12.3%和1.75%,进而能够有效抑制水力不稳定马鞍区的形成。  相似文献   

18.
为了探索蜗壳式混流泵在小流量工况下的流动特性,基于RNG k-ε湍流模型对一台比转速为585的双蜗壳混流泵进行数值计算,并预测了其外特性,利用外特性试验验证了数值计算方法的可靠性,结果表明:小流量工况下叶轮进口处无法满足无撞击入流,流体质点不断冲叶片压力面前缘,导致该部位存在一个局部高速低压区域;0.6Qd工况下,叶轮进口截面位置产生明显的涡核,此时泵内部无法满足无预旋入流;设计工况下蜗壳截面上流线光滑平顺,随着流量不断减小至0.6Q_d工况,隔舌部位、蜗壳隔板进口处以及蜗壳出口部位产生3处明显的漩涡,同时这3个部位的湍动能明显高于其他部位;蜗壳隔板内侧的湍动能明显大于隔板外侧,蜗壳内部流线图中的漩涡均发生在隔板内测,从而说明隔板内侧流动的不稳定性较大。  相似文献   

19.
在离心泵等旋转机械中口环通常作为一种减小泄露流量的部件,但随着口环间隙的减小和转子转速的增加,其动力学特性对高速离心泵的稳定运行影响不容忽视。基于数值模拟的方法计算研究了高速离心泵在工作状态下口环处产生的流体力,并讨论了减小口环处不稳定流体激振力的方法。通过整体建模高速离心泵流场域,计算了处于具体的进出口边界条件下的口环中转子在不同涡动半径、涡动比和口环密封尺寸下所受流体激振力。结果表明:单蜗壳式高速离心泵口环密封处产生的流体力占据了叶轮总体径向力的大部分,泵转子涡动时口环密封处产生频率等于轴频的交变力频率;口环密封激振力与转子涡动半径和涡动比有密切的关系;口环密封尺寸对口环流体激振力的影响显著,在相同口环间隙与长度比下,口环轴向长度的变化对口环所受流体力的影响比口环间隙大,同时,对口环密封性能影响小。  相似文献   

20.
为了研究离心泵空化诱导的非定常激励特性,采用数值模拟方法,分析了泵叶轮内压力脉动、涡量脉动及径向力特性。结果表明:叶轮内压力脉动的主频均为叶轮转频fi,涡量脉动的主频为1/5fi、fi、2fi;压力脉动强度从叶轮进口到出口逐渐增强;涡量脉动强度在叶轮出口处最大,进口处其次,叶片中部最小;空化发展诱发低频压力脉动和低频涡量脉动;径向力的大小和方向,由于空泡排挤作用而发生变化,空化充分发展时空泡脱落和溃灭,导致径向力骤增。对离心泵内空化诱导的振动和噪声产生机理的深入研究提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号