首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对传统多阈值分割方法计算复杂度随着阈值个数的增加而增长,以及对给定图像进行多阈值分割操作时效率很低等问题,提出了一种基于共生生物搜索(SOS)算法结合Kapur熵的多阈值分割方法。首先将精英反策略(EOBL)引入到SOS算法的共栖阶段,从而改善传统SOS算法处理复杂优化问题时易陷入局部最优的问题;然后引入莱维飞行策略扩大SOS算法的的搜索范围,增强其搜索轨迹的随机性;最终将得到的改进共生生物搜索(MSOS)算法应用到林火图像最佳阈值的选取问题上。实验结果表明,与粒子群优化算法、和声搜索算法、蝙蝠算法等对比算法相比,所提算法能更好地分割图像,在实际工程问题中具有一定的实用性和价值。  相似文献   

2.
Structural optimization with frequency constraints is a challenging class of optimization problems characterized by highly non-linear and non-convex search spaces. When using a meta-heuristic algorithm to solve a problem of this kind, exploration/exploitation balance is a key feature to control the performance of the algorithm. An excessively exploitative algorithm might focus on certain areas of the search space ignoring the others. On the other hand, an algorithm that is too explorative overlooks high quality solutions as a result of not performing adequate local search.This paper compares nine multi-agent meta-heuristic algorithms for sizing and layout optimization of truss structures with frequency constraints. The variation of the diversity index during the optimization history is analyzed in order to inspect exploration/exploitation properties of each algorithm. It appears that there is a significant relationship between the algorithm efficiency and the evolution of the diversity index.  相似文献   

3.
针对离子运动算法空间探索能力和开发能力的不足,提出一种改进算法.在离子运动算法的液态阶段中,该算法嵌入一种多样性反馈搜索机制和全局最优引导策略的算法结构;同时,优化算法晶态阶段中的初始化过程采用反向学习方法生成,其中,初始化概率采用动态惯性改变方式.经过国际上通用的23个基准函数测试,与一些流行的元启发式算法比较,并从平均收敛值、方差、Wilcoxon符号秩检验、收敛成功率以及最优收敛时间等方面进行综合评估,从而表明所提出算法的有效性.  相似文献   

4.

Differential evolution (DE) is a population-based stochastic search algorithm, whose simple yet powerful and straightforward features make it very attractive for numerical optimization. DE uses a rather greedy and less stochastic approach to problem-solving than other evolutionary algorithms. DE combines simple arithmetic operators with the classical operators of recombination, mutation and selection to evolve from a randomly generated starting population to a final solution. Although global exploration ability of DE algorithm is adequate, its local exploitation ability is feeble and convergence velocity is too low and it suffers from the problem of untime convergence for multimodal objective function, in which search process may be trapped in local optima and it loses its diversity. Also, it suffers from the stagnation problem, where the search process may infrequently stop proceeding toward the global optimum even though the population has not converged to a local optimum or any other point. To improve the exploitation ability and global performance of DE algorithm, a novel and hybrid version of DE algorithm is presented in the proposed research. This research paper presents a hybrid version of DE algorithm combined with random search for the solution of single-area unit commitment problem. The hybrid DE–random search algorithm is tested with IEEE benchmark systems consisting of 4, 10, 20 and 40 generating units. The effectiveness of proposed hybrid algorithm is compared with other well-known evolutionary, heuristics and meta-heuristics search algorithms, and by experimental analysis, it has been found that proposed algorithm yields global results for the solution of unit commitment problem.

  相似文献   

5.

This paper presents symbiotic organisms search (SOS) algorithm to solve economic emission load dispatch (EELD) problem for thermal generators in power systems. The basic objective of the EELD is to minimize both minimum operating costs and emission levels, while satisfying the load demand and all equality–inequality constraints. In other research direction, this multi-objective problem is converted into single-objective function by using price penalty factor approach in order to solve it with SOS. The proposed algorithm has been implemented on various test cases, with different constraints and various cost curve nature. In order to see the effectiveness of the proposed algorithm, its results are compared to those reported in the recent literature. The results of the algorithms indicate that SOS gives good results in both systems and very competitive with the state of the art for the solution of the EELD problems.

  相似文献   

6.
针对人工蜂群算法存在开发与探索能力不平衡的缺点,提出了具有自适应全局最优引导快速搜索策略的改进算法.在该策略中,首先采蜜蜂利用自适应搜索方程平衡了不同搜索方法的探索和开发能力;其次跟随蜂利用全局最优引导邻域搜索方程对蜜源进行精细化搜索,以提高其收敛精度和全局搜索能力.14个标准测试函数的仿真结果表明,相比其他算法,所提出的改进算法有效平衡了算法的开发与探索能力,并提高了其最优解的精度及收敛速度.  相似文献   

7.

The metaheuristic optimization algorithms are relatively new optimization algorithms introduced to solve optimization problems in recent years. For example, the firefly algorithm (FA) is one of the metaheuristic algorithms inspired by the fireflies' flashing behavior. However, its weakness in terms of exploration and early convergence has been pointed out. In this paper, two approaches were proposed to improve the FA. In the first proposed approach, a new improved opposition-based learning FA (IOFA) method was presented to accelerate the convergence and improve the FA's exploration capability. In the second proposed approach, a symbiotic organisms search (SOS) algorithm improved the exploration and exploitation of the first approach; two new parameters set these two goals, and the second approach was named IOFASOS. The purpose of the second method is that in the process of the SOS algorithm, the whole population is effective in the IOFA method to find solutions in the early stages of implementation, and with each iteration, fewer solutions are affected in the population. The experiments on 24 standard benchmark functions were conducted, and the first proposed approach showed a better performance in the small and medium dimensions and exhibited a relatively moderate performance in the higher dimensions. In contrast, the second proposed approach was better in increasing dimensions. In general, the empirical results showed that the two new approaches outperform other algorithms in most mathematical benchmarking functions. Thus, The IOFASOS model has more efficient solutions.

  相似文献   

8.
In view of the shortcomings such as slow search speed, low optimization precision and premature convergence of artificial hummingbird algorithm, an enhanced artificial hummingbird algorithm based on golden sine factor named DGSAHA is proposed. Firstly, chaos mapping is used to generate the initial candidate solution to increase the diversity of the population, which lays the foundation for the global search. Then, perturb the individuals by means of the differential variation between individuals on the group, thereby enhancing the diversity of the population, preserving the excellent individuals, eliminating the inferior individuals, and guiding the search process to approach the global optimal solution, avoiding the phenomenon of premature convergence. Finally, the golden sine factor were introduced in the guided foraging stage is conducive to the full exploration of the global optimal solution, reducing the search space for individuals to approach the optimal solution. And, it facilitates the balance between “exploration” and “exploitation” of algorithm. Thereby, the accuracy and speed of the DGSAHA can be improved to a certain extent. 25 classic functions, the CEC2014 and CEC2019 benchmark functions were tested, and several representative meta-heuristic algorithms and its improved algorithm are compared for evaluate the validity of DGSAHA. Meanwhile, the dimensional scalability of the variable-dimensional test function is discussed. The results of non-parametric statistical analysis and performance index show that DGSAHA in this paper has better comprehensive optimization performance, significantly improves the search speed and convergence precision, and has strong ability to get rid of the local optimal solution. Finally, the performance of DGSAHA and the practicability of truss structure are answered by three engineering examples of plane and space truss topology optimization problem. This optimization problem considers not only the static constraints such as stress, displacement and buckling, but also the dynamic constraints of frequency and motion stability. In order to avoid singularity and unnecessary analysis, the stiffness, mass and load matrices are reconstructed in finite element analysis. A lighter truss structure than the existing solution is obtained. The validity, extensibility and practicability of the algorithm are further illustrated.  相似文献   

9.
Truss shape and sizing optimization under frequency constraints is extremely useful when improving the dynamic performance of structures. However, coupling of two different types of design variables, nodal coordinates and cross-sectional areas, often lead to slow convergence or even divergence. Because shape and sizing variables coupled increase the number of design variables and the changes of shape and sizing variables are of widely different orders of magnitude. Otherwise, multiple frequency constraints often cause difficult dynamic sensitivity analysis. Thus optimal criteria and mathematical programming methods have considerable limitations on solving the problems because of needing complex dynamic sensitivity analysis and being easily trapped into the local optima. Genetic Algorithms (GAs) show great potentials to solve the truss shape and sizing optimization problems. Since GAs adopt global probabilistic population search techniques and require no gradient information. The improved genetic algorithms can effectively increase the solution quality. However, the serial GA is computationally expensive and is limited on gaining higher quality solutions. To solve the truss shape and sizing optimization problems with frequency constraints more effectively and efficiently, a Niche Hybrid Parallel Genetic Algorithm (NHPGA) is proposed to significantly reduce the computational cost and to further improve solution quality. The NHPGA is to blend the advantages of parallel computing, simplex search and genetic algorithm with niche technique. Several typical truss optimization examples demonstrate that NHPGA can significantly reduce computing time and attain higher quality solutions. It also suggests that the NHPGA provide a potential algorithm architecture, which effectively combines the robust and global search characteristics of genetic algorithm, strong exploitation ability of simplex search and computational speedup property of parallel computing.  相似文献   

10.
《国际计算机数学杂志》2012,89(12):2423-2440
ABSTRACT

Bayesian network is an effective representation tool to describe the uncertainty of the knowledge in artificial intelligence. One important method to learning Bayesian network from data is to employ a search procedure to explore the space of networks and a scoring metric to evaluate each candidate structure. In this paper, a novel discrete particle swarm optimization algorithm has been designed to solve the problem of Bayesian network structures learning. The proposed algorithm not only maintains the search advantages of the classical particle swarm optimization but also matches the characteristics of Bayesian networks. Meanwhile, mutation and neighbor searching operators have been used to overcome the drawback of premature convergence and balance the exploration and exploitation abilities of the particle swarm optimization. The experimental results on benchmark networks illustrate the feasibility and effectiveness of the proposed algorithm, and the comparative experiments indicate that our algorithm is highly competitive compared to other algorithms.  相似文献   

11.

In this paper, a new hybrid algorithm is introduced, combining two Harris Hawks Optimizer (HHO) and the Imperialist Competitive Algorithm (ICA) to achieve a better search strategy. HHO is a new population-based, nature-inspired optimization algorithm that mimics Harris Hawks cooperative behavior and chasing style in nature called surprise pounce HHO. It is a robust algorithm in exploitation, but has an unfavorable performance in exploring the search space, while ICA has a better performance in exploration; thus, combining these two algorithms produces an effective hybrid algorithm. The hybrid algorithm is called Imperialist Competitive Harris Hawks Optimization (ICHHO). The proposed hybrid algorithm's effectiveness is examined by comparing other nature-inspired techniques, 23 mathematical benchmark problems, and several well-known structural engineering problems. The results successfully indicate the proposed hybrid algorithm's competitive performance compared to HHO, ICA, and some other well-established algorithms.

  相似文献   

12.

This paper addresses multi-objective optimization and the truss optimization problem employing a novel meta-heuristic that is based on the real-world water cycle behavior in rivers, rainfalls, streams, etc. This meta-heuristic is called multi-objective water cycle algorithm (MOWCA) which is receiving great attention from researchers due to the good performance in handling optimization problems in different fields. Additionally, the hyperbolic spiral movement is integrated into the basic MOWCA to guide the agents throughout the search space. Consequently, under this hyperbolic spiral movement, the exploitation ability of the proposed MOSWCA is promoted. To assess the robustness and coherence of the MOSWCA, the performance of the proposed MOSWCA is analysed on some multi-objective optimisation benchmark functions; and three truss structure optimization problems. The results obtained by the MOSWCA of all test problems were compared with various multi-objective meta-heuristic algorithms reported in the literature. From the empirical results, it is evident that the suggested approach reaches an excellent performance when solving multi-objective optimization and the truss optimization problems.

  相似文献   

13.
针对资产数目和投资资金比例受约束的投资组合选择这一NP难问题,基于混沌搜索、粒子群优化和引力搜索算法提出了一种新的混合元启发式搜索算法。该算法能很好地平衡开发能力和勘探能力,有效抑制了算法早熟收敛现象。标准测试函数的测试结果表明混合算法与标准的粒子群优化和引力搜索算法相比具有更好的寻优效率;实证分析进一步对混合算法与遗传算法及粒子群优化算法在求解这类投资组合选择问题的性能进行了比较。数值结果表明,混合算法在搜索具有高预期回报的非支配投资组合方面表现更好,取得了更为满意的结果。  相似文献   

14.

为了改善粒子群优化算法的优化性能, 提出一种改进的全局粒子群优化(IGPSO) 算法. 该算法基于开采能力和搜索能力相均衡的思想提出全局邻域搜索策略和扰动策略, 使算法减少陷入局部极值的可能性, 同时以一定概率对全局最优粒子进行摄动操作, 加快算法收敛. 与其他智能算法相比较, 测试结果从寻优精度、收敛速度和非参数统计显著性方面验证了IGPSO 算法的有效性.

  相似文献   

15.
The policy of balance between exploration capability and exploitation capability directly affects the solution performance of the meta-heuristic algorithm in a limited time. In order to better balance the exploration and exploitation capabilities of the algorithm and meet the solution requirements of complex real-world problems, the adaptive balance optimization algorithm (ABOA) is proposed in this paper. The algorithm consists of a global search phase (GSP) and a local search phase (LSP) and is controlled by a fixed parameter. ABOA not only considers the balance of exploration and exploitation capabilities of the algorithm throughout the whole iterative process but also focuses on the balance of exploration and exploitation in both GSP and LSP. The search in both phases is focused around the respective search centers from outside to inside. ABOA balances the exploration and exploitation capabilities of the algorithm throughout the search process by two adaptive policies: changing the search area and changing the search center. Fifty-two unconstrained benchmark test functions were employed to evaluate the performance of ABOA. The results of ABOA were compared with nine excellent optimization algorithms available in the literature. The statistical results and Friedman test showed that ABOA was significantly competitive. Finally, the results of the examined engineering design problems showed that ABOA can solve the constrained optimization problem better compared to other methods.  相似文献   

16.
借鉴自然界群居生物的搜索行为模式,提出一种群体区域搜索算法。该算法在优化过程中逐步收缩个体搜索半径并进行适度随机调整,引入巡游追随机制,以一种简单而自然的方式有效地实现了算法广域探索能力与局部开发能力之间的平衡。算法结构简单、易实现,易与其他算法相结合。通过6个典型测试函数的实验结果表明,该算法全局优化能力强、收敛精度高、稳定性好、总体性能优,适用于复杂函数优化问题的处理。  相似文献   

17.
本文提出了一种多元化智能个体分工明确、协同合作的超启发式智能优化算法—–多元优化算法.多元优化算法通过交替的全局、局部搜索迭代对解空间搜索以逐渐逼近全局最优解.搜索个体按照分工不同可以分为全局搜索个体(全局元)和局部搜索个体(局部元).全局元负责对整个解空间进行全局搜索以快速找到较优潜在解区域,局部搜索元负责对各个潜在解区域进行局部搜索以提高解的质量.该算法具有两个特点:分工明确的搜索策略不需要考虑均衡全局搜索和局部搜索,能够保证局部搜索能力的同时加强全局搜索以避免陷入局部最优解;全局、局部交替搜索保证了算法对全局最优解的渐近性.本文从理论上证明了算法的渐近性并且基于复杂多模态测试函数比较了几个优秀的进化算法.实验结果表明多元优化算法在渐近性方面优于其他几个比较的算法.  相似文献   

18.

Artificial bee colony (ABC) algorithm is an efficient biological-inspired optimization method, which mimics the foraging behavior of honey bees to solve the complex and nonlinear optimization problems. However, in some cases, it suffers from inefficient exploration, low exploitation and slow convergence rate. These shortcomings cause the problem of stagnation at local optimum which is dangerous in determining the true solution (optima) of the problem. Therefore, in the present paper, an attempt has been made toward the removal of the drawbacks from the classical ABC by proposing a novel hybrid method called SCABC algorithm. The SCABC algorithm hybridizes the ABC with sine cosine algorithm (SCA) to upgrade the level of exploitation and exploration in the classical ABC algorithm. The SCA is a recently introduced algorithm, which uses the trigonometric functions sine and cosine to perform the search. The validation of the SCABC algorithm is performed on a well-known benchmark set of 23 optimization problems. The various analysis metrics such as statistical, convergence and performance index analysis verify the better search ability of the SCABC as compared to classical ABC, SCA. The comparison with some other optimization algorithms demonstrates a comparatively better state of exploitation and exploration in the SCABC algorithm. Moreover, the SCABC is also employed on multilevel thresholding problems. The various performance measures demonstrate the efficacy of the SCABC algorithm in determining the optimal thresholds of gray images.

  相似文献   

19.
不等式约束的非线性规划混合遗传算法   总被引:1,自引:0,他引:1  
针对带不等式约束的非线性规划问题,提出了一个混合遗传算法。该算法分为全局探测和局部开采两个阶段,全局探测阶段是通过在有潜力的小生境内嵌入单纯形搜索,快速确定有前景的区域;而局部开采阶段则是在最有前景的区域进行单纯形搜索。该算法增强了局部搜索能力并同时保持种群的多样性,有效地解决了遗传算法的过早收敛和局部搜索能力弱的问题。典型非线性规划算例验证了混合算法的效率、精度和可靠性。  相似文献   

20.

The newly proposed Generalized Normal Distribution Optimization (GNDO) algorithm is used to design the truss structures with optimal weight. All trusses optimized have frequency constraints, which make them very challenging optimization problems. A large number of locally optimal solutions and non-convexity of search space make them difficult to solve, therefore, they are suitable for testing the performance of optimization algorithm. This work investigates whether the proposed algorithm is capable of coping with such problems. To evaluate the GNDO algorithm, three benchmark truss optimization problems are considered with frequency constraints. Numerical data show GNDO’s reliability, stability, and efficiency for structural optimization problems than other meta-heuristic algorithms. We thoroughly analyse and investigate the performance of GNDO in this engineering area for the first time in the literature.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号