首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The use of biodiesel-blended fuels in diesel engines improves the engine performance parameters and the partial recovery of incomplete combustion products, while also increasing the level of NOx emissions. In this study; biodiesel obtained through the transesterification of waste chicken frying oil was mixed with diesel fuel (90% diesel + 10% biodiesel-B10), and was then used as fuel in a direct injection diesel engine. To reduce the increased NOx emissions caused by the use of B10 fuel, the steam injection method (which is one of the NOx reduction methods) was applied. Steam was injected into the intake manifold at different ratios (5%-S5, 10%-S10 and 15%-S15) and at the time of the induction stroke with the aid of an electronically controlled system. Based on the study results, it was observed that steam injection into the engine using B10 fuel improved both the engine performance and the exhaust emission parameters. It was determined that the S15 steam injection ratio resulted in the best engine performance and emissions parameters. In comparison to STD fuel; the highest increase observed at the S15 steam injection ratio in the effective engine power was 2.2%, while the highest decrease in the specific fuel consumption was 3.4%, the highest increase in the effective efficiency was 3.5%, and the highest decrease in NOx emissions was 13.7%.

  相似文献   

2.

Biodiesel is an environmentally friendly fuel that can replace diesel in compression ignition engines without changing the engine structure. Biodiesel is typically manufactured from vegetable oils and animal fats, which give the fuel its oxidation stability and cold-flow properties, respectively. However, the kinematic viscosity of biodiesel can cause engine performance problems such as incomplete combustion and sludge formation due to insufficient fuel atomization. To address these problems, in this study, a pretreatment technology that lowers the kinematic viscosity of biodiesel made from blended animal fat and vegetable oil was developed. The results of application of the pretreated fuel to a single-cylinder power tiller engine indicated that it produced 88.3–99.8 % of the brake power produced by conventional diesel. In addition, although the pretreated biodiesel exhaust included increased amounts of nitrogen oxides and carbon dioxide emissions, the proposed fuel also decreased the amounts of hydrocarbon and carbon monoxide emissions compared with conventional diesel emissions.

  相似文献   

3.
Owing to the increasing cost of petroleum products, fast depletion of fossil fuel, environmental consideration and stringent emission norms, it is necessary to search for alternative fuels for diesel engines. The alternative fuel can be produced from materials available within the country. Though the vegetable oils can be fuelled for diesel engines, their high viscosities and low volatilities have led to the investigation of its various derivatives such as monoesters, known as bio diesel. It is derived from triglycerides (vegetable oil and animal fates) by transesterification process. It is biodegradable and renewable in nature. Biodiesel can be used more efficiently in semi adiabatic engines (Semi LHR), in which the temperature of the combustion chamber is increased by thermal barrier coating on the piston crown. In this study, the piston crown was coated with ceramic material (TiO2) of about 0.5 mm, by plasma spray method. In this present work, the experiments were carried out with of Pongamia oil methyl (PME) ester and diesel blends (B20 & B100) in a four stroke direct injection diesel engine with and without coated piston at different load conditions. The results revealed 100% bio diesel, an improvement in brake thermal efficiency (BTE) and the brake specific fuel consumption decreased by about 10 % at full load. The exhaust emissions like carbon monoxide (CO) and hydrocarbon (HC) were decreased and the nitrogen oxide (NO) emission increased by 15% with coated engine compared with the uncoated engine with diesel fuel. The peak pressure and heat release rate were increased for the coated engine compared with the standard engine.  相似文献   

4.
Due to the shortage of petroleum products and its increasing cost, efforts are on to develop alternate fuels, especially diesel oil, for partial or full replacement. Also, internal combustion engines generate undesirable emissions during combustion process. The emissions exhausted in to the surroundings pollute the atmosphere and causes several problems. The emissions of concern are: unburnt hydrocarbons, oxides of carbon, and oxides of nitrogen (NOX). Advanced diesel fuel formulations offer significant emission reductions to new and older in-use engines every time the fuel tank is filled. The addition of water to diesel fuel lowers particulate emissions by serving as diluents to the key combustion intermediates that lead to particulate formation. The incorporation of water also reduces NOX emissions by lowering the peak combustion temperatures through high heat of vaporization. When using water blend diesel, the engine fuel system recognizes the liquid as diesel fuel because the water droplet is encapsulated within a diesel fuel. In this experiment, we have used single cylinder four-stroke engine and the water-blend diesel emulsion is used and the diesel emission test, emulsion emission test, and various gases has been analyzed; smoke meter test is also conducted for various rate of loads. The test results from the engine fuelled with water-blend diesel showed reduction in emissions as compared to that of engine fuelled with conventional diesel. The better emissions in the CI engine using water-blend diesel is due to the incorporation of water which reduces NOX emissions by lowering the peak combustion temperatures. Water-blend fuel enhances fuel atomization by micro-explosion. The addition of water to diesel fuel lowers particulate emissions by serving as diluents to the key combustion intermediates that lead to particulate formation  相似文献   

5.
Dilution of engine oil occurs when fuel is injected late in the combustion cycle to regenerate the diesel particulate filter used for trapping particulate emissions. Fuel dilution reduces oil viscosity and the concentration of engine oil additives, potentially compromising lubricant performance. Biodiesel usage may compound these issues due to its oxidative instability, and its higher boiling point compared to mineral diesel potentially causes it to concentrate more in the oil sump.

In this work, different amounts of mineral diesel and biodiesel (soy methyl ester, SME) were combined with 15W-40 CJ-4 diesel engine oil in laboratory oil aging experiments. Fuel was added and oil samples were withdrawn at periodic intervals. The oils were analyzed using typical oil analysis procedures to determine their condition, and wear evaluations under boundary lubricating conditions were determined using a high-frequency reciprocating rig (HFRR). Results showed that fuel dilution accelerated engine oil degradation, with biodiesel having a larger effect. However, friction remained unchanged with dilution, and wear actually decreased for fuel-diluted oils after 48 h of aging compared to aging without fuel dilution. Examination of the tribofilms by ultraviolet (UV) and visible Raman spectroscopy as well as Auger electron spectroscopy showed that additional carbon-containing components were present on tribofilms formed from fuel-diluted oils. These fuel-derived components may be responsible for the decreased wear observed.  相似文献   

6.
It seems very difficult to comply with upcoming stringent emission standards in vehicles To develop low emission engines, better quality of automotive fuels must be achieved Since sulfur contents in diesel fuels are transformed to sulfate—laden particulate matters as a catalyst is applied, it is necessary to provide low sulfur fuels before any Pt-based oxidation catalysts are applied In general, flash point, distillation 90% and cetane index are improved but viscosity can be worse in the process of desulfunzation of diesel fuel Excessive reduction of sulfur may cause to degrade viscosity of fuels and engine performance in fuel injection systems This research focused on the performance of an 11,000 cc diesel engine and emission characteristics by the introduction of ULSD, bio-diesel and a diesel oxidation catalyst, where the bio—diesel was used to improve viscosity of fuels in fuel injection systems as fuel additives or alternative fuels  相似文献   

7.
This experimental study sought to investigate the characteristics of the exhaust emissions, and nanoparticle size distribution of particulate matter (PM) emitted from diesel engines fueled with 20% biodiesel-diesel blended fuel (BD20). The study also investigated the conversion efficiency of the warm-up catalytic converter (WCC). The emission characteristics of HC, CO, NOx and nano-sized PM were also observed according to engine operating conditions with and without exhaust gas recirculation (EGR). The study revealed that the maximum torque achievable with the biodieseldiesel blended fuel was slightly lower than that achievable with neat diesel fuel at high-load conditions. Smoke was decreased by more than 20% in all 13 modes. While the CO and THC emissions of BD20 slightly decreased, the NOx emission of BD20 increased by 3.7%. Measured using the scanning mobility particle sizer (SMPS), the total number and total mass of the nanoparticles in the size range between 10.6nm and 385nm were reduced by about 10% and 25%, respectively, when going from D100 to BD20. The particle number and mass for both fuels were reduced by about 43% when going from with EGR to without EGR. When EGR was applied in the engine system, the particle number and mass were reduced by 24%, and 16%, respectively, when going from D100 to BD20.  相似文献   

8.
The world is faced with a problem of air pollution due to the exhaust emissions from automobile. Recently, lots of researchers have been attracted to develope various alternative fuels and to use renewable fuels as a solution of these problems. There are many alternative fuels studied in place of diesel fuel made from petroleum. Biodiesel fuel (BDF) is a domestically produced, renewable fuel that can be manufactured from vegetable oils, used vegetable oils, or animal fats. In this study, the usability of BDF, one of the oxygenated fuels as an alternative fuel for diesel engines was investigated in an IDI diesel engine. Emissions were characterized with a neat BDF and with a blend of BDF and conventional diesel fuel. Since the BDF includes oxygen of about 11%, it could influence the combustion process strongly. Therefore, the use of BDF resulted in lower emissions of carbon monoxide and smoke emissions with some increase in emissions of oxides of nitrogen. It is concluded that BDF can be utilized effectively as a renewable fuel for IDI diesel engines.  相似文献   

9.
Biodiesel fuels that consist of saturated and unsaturated long-chain fatty acid alkyl esters are an alternative diesel fuel produced from vegetable oils or animal fats. However, autoxidation of biodiesel fuels during storage is easily caused by air, reducing fuel quality by adversely affecting its properties such as kinematic viscosity and acid value. One approach to improve the resistance of biodiesel fuels to autoxidation is to mix them with antioxidants. This study investigated the effectiveness of five such antioxidants in mixtures with biodiesel fuels produced by three biodiesel manufacturers: butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), tert-butylhydroquinone (TBHQ), propyl gallate (PrG) and α-tocopherol. An engine test was also performed to investigate the combustion characteristics of biodiesel fuel with antioxidants in an indirect-injection (IDI) diesel engine. Oxidation stability was determined using Rancimat equipment. The results showed that TBHQ, BHA, and BHT were the most effective and α-tocopherol was the least effective in increasing the oxidation stability of biodiesel. The combustion characteristics and exhaust emissions in diesel engine were not influenced by the addition of antioxidants in biodiesel fuel. This study recommends TBHQ and PrG to be used for safeguarding biodiesel fuel from the effects of autoxidation during storage.  相似文献   

10.

The present work is dedicated to the comparative experimental study of biodiesel-ethanol blends in a compression ignition engine using TiO2 (Titanium oxide) nanoparticle, ZrO2 (Zirconium oxide) nanoparticle and DEE (Diethyl ether) additives. The test fuels used are a blend of biodiesel (80%) -ethanol (20%) (denoted as BE), a blend of BE with 25 ppm Titanium oxide nanoparticle (denoted as BE-Ti), a blend of BE with 25 ppm Zirconium oxide nanoparticle (denoted as BE-Zr) and a blend of BE with 50 ml Diethyl ether (denoted as BE-DEE). Addition of nanoparticles increases the oxidation rate, reduces the light-off temperature and creates large contact surface area with the base fuel thereby enhancing the combustion with minimal emissions. Experimental results shown that addition of Titanium nanoparticles increased NOx, HC and smoke with lowered BSFC and CO. Whereas addition of Zirconium nanoparticles increases BSFC and HC emissions with lowered CO, CO2 and smoke emissions in comparison with BE blends. DEE addition to BE blends improved the heat release rate and increased HC, CO emissions were observed with lowered BSFC, NOx and smoke. Simultaneous reduction of NOx and smoke indicates the effect of DEE on Low temperature combustion (LTC).

  相似文献   

11.
We investigated the effect of intake air enrichment on the performance, combustion, and emission characteristics of a single cylinder direct-injection stationary diesel engine fueled with non- edible alternative fuel, namely, cardanol — diesel — methanol blend (B20M10). The results were compared with baseline diesel operations under standard operating conditions. The bio-fuel blend B20M10 (20% cardanol, 10% Methanol, and 70% diesel) was used as fuel and the combustion, performance, and emission characteristics were investigated by oxygen enriching of intake air with 3, 5, and 7 percentage by weight. With the increase of intake air oxygen concentration, CO, HC, and smoke were found to be decreased. But BTE and NOx emission were considerably increased. The blended fuel B20M10 with 7% oxygen enrichment of intake air was compared with diesel operation. The results show a 0.5% lesser BTE, 28% more NOx emission at full load condition. There is not much variation of smoke emission to be noticed for this fuel combination compared to diesel.  相似文献   

12.
The effect of water emulsified fuel on a motorway-bus diesel engine   总被引:1,自引:0,他引:1  
In this study, the combustion characteristics and durability of a diesel engine using emulsified fuel was investigated. Water was used in oil type emulsified fuel. In order to understand the effect of emulsified fuel in a wide range of engine running conditions, D-13 mode was selected as a test condition, and a durability test was included to understand the long-term effect of water. Combustion pressure in a cylinder, exhaust emissions, specific fuel consumption, sound level and maximum torque were measured. NOx and PM were simultaneously reduced and the specific fuel consumption was increased and decreased at low and high loads, respectively. There was no trouble and any damage on the parts of the cylinder during a 500 hour durability test.  相似文献   

13.
介绍了柴油引燃甲醇双燃料燃烧对柴油机CH、NOx和碳烟排放的影响。采用柴油引燃甲醇双燃料在一台单缸、直喷、中冷柴油机上进行。随着甲醇质量分数的增加,HC排放迅速增加,NOx排放减少,发动机碳烟排放大幅度降低。  相似文献   

14.

In this investigation, an attempt has been made to study by varying the charge temperature on the ethanol fueled Homogeneous charge compression ignition (HCCI) combustion engine. Ethanol was injected into the intake manifold by using port fuel injection technique while the intake air was heated for achieving stable HCCI operation. The effect of intake air temperature on the combustion, performance, and emissions of the ethanol HCCI operation was compared with the standard diesel operation and presented. The results indicate that the intake air temperature has a significant impact on in-cylinder pressure, ringing intensity, combustion efficiency, thermal efficiency and emissions. At 170°C, the maximum value of combustion efficiency and brake thermal efficiency of ethanol are found to be 98.2% and 43%, respectively. The NO emission is found to be below 11 ppm while the smoke emission is negligible. However, the UHC and CO emissions are higher for the HCCI operation.

  相似文献   

15.

Energy is becomes a vital and crucial parameter in many technical, commercial and self-development sectors of an individualistic in any countries. In this context, fossil fuels are devaluing and their costs are rises and hovering. While generating energy from the existing fossil fuels not alone economically infeasible but also provoke many sensitive environmental issues. Along with emissions from automobile sector, one of the other culprits in eco system is disposal of waste plastics. To meet the acute energy needs with eco-balance is utilizing plastic oil as functional fuel to run the engines. In the present work experimental investigations are carried out on multi cylinder petrol engine operating with 25 % plastic pyrolysis oil, with and without alcohol additives at 5 % volume basis is blended with petrol. It is noticed from the experimental results that, the engine performance with methanol additive is improved by 8.1 % than petrol and 21.74 % compared to without additive in plastic oil blend. Hydrocarbon emissions are substantially controlled by 54 % compared to petrol and 34.59 % than without additive in plastic oil blend at full load condition.

  相似文献   

16.
The combustion and heat release of engines using diesel fuel and bio-diesel fuel have been investigated. The results illustrate that the combustion happens in advance and the ignition delay period is shortened. The initial heat release peak declines a little, the corresponding crankshaft angle changes in advance, and the combustion duration is prolonged. The economic performance and emission features of diesel engines using diesel fuel and bio-diesel fuel are compared. The results also show that the specific fuel consumption of bio-diesel increases by about 12% .The emissions, such as CO, HC, and particulate matter decrease remarkably whereas NOx increases a little.  相似文献   

17.
利用三维数值仿真的方法,对带有浴盆形燃烧室的天然气发动机缸内流动和燃烧特性进行分析,提出了两种燃烧室结构优化设计方案,试验对比了采用原燃烧室和挤气喷射燃烧室时的发动机性能。结果表明:在不改变压缩比情况下,通过改变活塞头部凸起形状和位置,能够实现浴盆形燃烧室内的挤流与滚流有效耦合;控制点火时刻的火花塞附近气体流速,能提高缸内平均湍动能,加大快速燃烧期内火焰前封面的面积,改善燃烧质量。发动机采用优化的2号挤气喷射燃烧室,能够明显加快发动机燃烧进程,提高发动机的动力性和经济性,发动机功率从75kW提高到78.7kW,最低比气耗降低4.4%,HC和CO排放略有降低。  相似文献   

18.

The future internal-combustion (IC) engines should have minimum emissions level under lowest feasible fuel consumption. This aim can be achievable with a homogeneous combustion process in diesel engines. We used a porous medium (PM) to homogenize the combustion process. This research studies simulation of a direct-injection diesel engine, equipped with a chemically inert hemispherical PM. Methane is injected into a hot PM, assuming mounted up the cylinder in head. Combustion with lean mixture occurs inside PM. A numerical model of PM engine was carried out using a modified version of the KIVA-3V code. PM results were evaluated with experimental data of unsteady combustion-wave of methane in a porous tube. The results show the mass fraction of methane, CO, NO and temperature in solid and gas phases of the PM and in-cylinder fluid. Also presented are the effects of injection timing and compression ratio on combustion.

  相似文献   

19.
A number of studies have recently been conducted to determine a suitable alternative fuel for conventional engine. The use of renewable fuels such as bio-ethanol, biogas, and biodiesel is thus investigated for this purpose. Performance tests were conducted on an indirect injection compression ignition engine by using diesel, unheated jatropha oil (JO), and preheated JO as fuels. The effects of fuel injection pressure and fuel inlet temperature on engine performance and emission for the different fuels were analyzed. Test results showed that the brake thermal efficiency of the engine with heated JO oil is superior to that with unheated JO, increasing from 28.4% with neat unheated JO to a maximum of 30.8%. The brake specific fuel consumption was reduced from 0.301 kg/kWh to 0.266 kg/kWh. Smoke opacity was also reduced relative to the neat unheated JO operation.  相似文献   

20.
The EGR system has been widely used to reduce nitrogen oxides (NOx) emission, to improve fuel economy and suppress knock by using the characteristics of charge dilution. However, as the EGR rate at a given engine operating condition increases, the combustion instability increases. The combustion instability increases cyclic variations resulting in the deterioration of engine performance and emissions. Therefore, the optimum EGR rate should be carefully determined in order to obtain the better engine performance and emissions. An experimental study has been performed to investigate the effects of EGR on combustion stability, engine performance, NOx and the other exhaust emissions from 1. 5 liter gasoline engine. Operating conditions are selected from the test result of the high speed and high acceleration region of SFTP mode which generates more NOx and needs higher engine speed compared to FTP-75 (Federal Test Procedure) mode. Engine power, fuel consumption and exhaust emissions are measured with various EGR rate. Combustion stability is analyzed by examining the variation of indicated mean effective pressure (COVimep) and the timings of maximum pressure (Pmax) location using pressure sensor. Engine performance is analyzed by investigating engine power and maximum cylinder pressure and brake specific fuel consumption (BSFC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号