首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Direct volume rendering based on projective methods works by projecting, in visibility order, the polyhedral cells of a mesh onto the image plane, and incrementally compositing the cell's color and opacity into the final image. Crucial to this method is the computation of a visibility ordering of the cells. If the mesh is "well-behaved" (acyclic and convex), then the MPVO method of Williams provides a very fast sorting algorithm; however, this method only computes an approximate ordering in general datasets, resulting in visual artifacts when rendered. A recent method of Silva et al. removed the assumption that the mesh is convex, by means of a sweep algorithm used in conjunction with the MPVO method; their algorithm is substantially faster than previous exact methods for general meshes.
In this paper we propose a new technique, which we call BSP-XMPVO, which is based on a fast and simple way of using binary space partitions on the boundary elements of the mesh to augment the ordering produced by MPVO. Our results are shown to be orders of magnitude better than previous exact methods of sorting cells.  相似文献   

2.
We describe a method for doing image compositing using either 2D geometric shapes or raster images as input primitives. The resolution of the final image is virtually unlimited but, as no frame buffer is used, performance is much less dependant on resolution than with standard painting programs, allowing rendering very large images in reasonable time. Many standard features found in compositing programs have been implemented, like hierarchical data structures for input primitives, lighting control for each layer and filter operations (for antialiasing or defocus).  相似文献   

3.
基于可见性选择体元的投影成像体绘制方法   总被引:1,自引:0,他引:1  
王文成  魏莉萍  吴恩华 《软件学报》2001,12(11):1699-1703
基于可见性避免了对不可见体元的合成操作,是提高体绘制速度的有效方法.为此提出了一种方法,根据体元基于体元面的相邻性及累积非透明度没有饱和的像素来挑选体元进行处理.这使得投影成像方法能有效地避免处理不可见体元.该方法不仅适用于平行投影和透视投影的成像运算,而且能处理各种规则场和非规则场.  相似文献   

4.
基于Slicing的快速有限元网格体绘制算法   总被引:3,自引:0,他引:3  
在Incremental Slicing算法的基础上,针对有限元网格的特点,提出了一种适合于多种有限元单元类型的快速体绘制方法,由于采用硬件加速的多边形RGBA填充方法混合显示数据场与几何体的外表面,优化了切面多边形的形成算法,并对于小单元进行了特殊处理,大大提高了有限元网格体绘制的速度与质量。  相似文献   

5.
In this paper, we present a novel method for the direct volume rendering of large smoothed‐particle hydrodynamics (SPH) simulation data without transforming the unstructured data to an intermediate representation. By directly visualizing the unstructured particle data, we avoid long preprocessing times and large storage requirements. This enables the visualization of large, time‐dependent, and multivariate data both as a post‐process and in situ. To address the computational complexity, we introduce stochastic volume rendering that considers only a subset of particles at each step during ray marching. The sample probabilities for selecting this subset at each step are thereby determined both in a view‐dependent manner and based on the spatial complexity of the data. Our stochastic volume rendering enables us to scale continuously from a fast, interactive preview to a more accurate volume rendering at higher cost. Lastly, we discuss the visualization of free‐surface and multi‐phase flows by including a multi‐material model with volumetric and surface shading into the stochastic volume rendering.  相似文献   

6.
体绘制方法是当前研究的一个热点问题,它的应用遍及医学、地质学、物理学、和科学计算等诸多领域。但目前它仍处于发展阶段,有许多问题都有待于进一步的研究。该文对体绘制方法中的若干算法进行了研究与比较,实现的算法是基于开发平台windows SDK,用C语言和原始的API编写Windows程序,以提供最佳的性能、最强大的功能和最大的灵活性。  相似文献   

7.
体绘制方法是当前研究的一个热点问题,它的应用遍及医学、地质学、物理学、和科学计算等诸多领域。但目前它仍处于发展阶段,有许多问题都有待于进一步的研究。该文对体绘制方法中的若干算法进行了研究与比较,实现的算法是基于开发平台windows SDK,用C语言和原始的API编写Windows程序,以提供最佳的性能、最强大的功能和最大的灵活性。  相似文献   

8.
三维实体的体几何模型   总被引:8,自引:0,他引:8  
王利生  谈正 《计算机学报》1999,22(7):777-780
在科学可视化,体图形学及有限元等许多应用问题中,都需要处理三维实体的内部、从点集拓扑体模型的思想出发,实体内部的属性及结构可看作三维实体占据的空间位置的函数,该文 体几何模型描述三维形体占据的空间位置,并给出构造体几何模型的一些简单方法,体几何模型是三参量模型,容易离散化所需计算量及存储量皆很少,体几何模型可用于三维实体的有限元剖分,实体内部的可视化与体图形学等领域中。  相似文献   

9.
基于矢量线强化的增强型2维流场实时绘制   总被引:2,自引:0,他引:2       下载免费PDF全文
在流场绘制中,合理地结合矢量场的多种属性有助于矢量场的特征分析,据此提出了一种基于矢量线强化的增强型2维流场实时绘制算法。通过对流场的一些标量属性如大小、角度和曲率进行色彩映射,该算法不仅可以清晰显示流场运动方向,而且能显示矢量场的多种属性,有助于了解流场矢量特征分布和主要拓扑结构。该算法采用了一种矢量线强化策略,即通过对卷积纹理在垂直矢量方向上进行1维高通滤波,增加了矢量线间的对比,改善了图像质量。利用现代图形卡的可编程能力,该算法可以在微机上达到实时绘制性能。  相似文献   

10.
针对大规模数据体绘制效率低下的问题,提出一种算法:对体数据进行纹理分块打包,移除空数据块,并创建数据块的索引数据,绘制时通过索引访问打包后的纹理实现大规模数据完全载入显存,同时在索引中标记空数据及高密度数据块的位置,绘制前生成其有效的立方体数据表达,结合早期光线终止与空域跳过等加速技术,有效地实现了大规模的体数据的实时绘制,同时保证了结果图像的质量。  相似文献   

11.
等值面的高质量显示方法   总被引:3,自引:0,他引:3  
等值面是描述体数据中所含特定器官表面的有效方式,因此对等值面进行快速高质量的显示就显得非常重要。与以往的等值面显示算法不同,本文提出的方法不需要用三角形网格去逼近等值面然后再对三角形网格进行显示,而是直接对原始等值面进行显示,从而避免了三角化过程中的计算损耗和精度损失等问题,保证了等值面轮廓不会出现锯齿状现象,使等值面的显示既快速又准确。  相似文献   

12.
Recent Advances in Volume Visualization   总被引:12,自引:0,他引:12  
In the past few years, there have been key advances in the three main approaches to the visualization of volumetric data: isosurfacing, slicing and volume rendering, which together make up the field of volume visualization.
In this survey paper we set the scene by describing the fundamental techniques for each of these approaches, using this to motivate the range of advances which have evolved over the past few years.
In isosurfacing, we see how the original marching cubes algorithm has matured, with improvements in robustness, topological consistency, accuracy and performance. In the performance area, we look in detail at pre-processing steps which help identify data which contributes to the particular isosurface required. In slicing too, there are performance gains from identifying active cells quickly.
In volume rendering, we describe the two main approaches of ray casting and projection. Both approaches have evolved technically over the past decade, and the holy grail of real-time volume rendering has arguably been reached.
The aim of this review paper is to pull these developments together in a coherent review of recent advances in volume visualization.  相似文献   

13.
用于体绘制的可变模板法   总被引:1,自引:0,他引:1  
作为投影成象的的一种重要方法,模板法在规则场的体绘制中取得了好的效果,然而,传统模板法要求样点的大小和形状一致,限制了其在曲线结构数据场和非规则数据场体绘制中的应用,因为这类场中样点的大小和形状变化很大。当前非规则场或曲线结构数据场中的体绘制计算复杂、成象速度很慢,严重影响了可视化的效率,本文提出了一种可变模板法,不受样点大小必须一致的限制,使得模板法能在曲线结构数据场和非规则场的体绘制中发挥充分  相似文献   

14.
Selective visualization is a solution for visualizing data of large size and dimensionality. In this paper a new method is proposed for effectively rendering certain chosen parts among the full set of data in terms of a colour buffer, referred to as the virtual plane, for storing intermediate results. By this method, scientists may concentrate their attention on the contents of data in which they are interested. Besides, the method could be easily integrated with all the current direct volume rendering techniques, especially progressive refinement methods and selective methods. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
Ray-traced volume rendering has been shown to be an effective method for visualizing 3D scalar data. However, with currently available workstation technology, interactive volume exploration using conventional volume rendering is still too slow to be attractive. This paper describes an enhanced volume rendering method which allows interactive changes of rendering parameters such as colour and opacity maps. An innovative technique is provided which allows the user to plant a ‘seed’ in the volume to rapidly modify local shading parameters. For a fixed viewing position, the user can interactively explore specific regions of interest. Furthermore, a virtual cutting technique with the exploratory seed allows the user to remove surfaces and see the internal structure of the volume. Examples demonstrate these techniques as an attractive option in many applications.  相似文献   

16.
Multi-resolution techniques are required for rendering large volumetric datasets exceeding the size of the graphics card's memory or even the main memory. The cut through the multi-resolution volume representation is defined by selection criteria based on error metrics. For GPU-based volume rendering, this cut has to fit into the graphics card's memory and needs to be continuously updated due to the interaction with the volume such as changing the area of interest, the transfer function or the viewpoint. We introduce a greedy cut update algorithm based on split-and-collapse operations for updating the cut on a frame-to-frame basis. This approach is guided by a global data-based metric based on the distortion of classified voxel data, and it takes into account a limited download budget for transferring data from main memory into the graphics card to avoid large frame rate variations. Our out-of-core support for handling very large volumes also makes use of split-and-collapse operations to generate an extended cut in the main memory. Finally, we introduce an optimal polynomial-time cut update algorithm, which maximizes the error reduction between consecutive frames. This algorithm is used to verify how close to the optimum our greedy split-and-collapse algorithm performs.  相似文献   

17.
Visualizing the flow of air or fluids is especially challenging because of their transparency and possible high velocity. Complex patterns are created when the flow is over or around an object. Our aim is to visualize the flow in three dimensions, eliminating the need for mentally piecing the flow from two-dimensional slices. We have applied the well-known ray casting technique to visualize the flow around an aircraft wing. During ray casting, when the ray does not intercept the lattice points, linear and B-spline hyperpatch interpolations are used to estimate the colour. We describe the shading equation, and compare the linear and the B-spline hyperpatch interpolation schemes during ray casting. Several images are produced to show the difference in the image quality of these two methods, and their image generation time.  相似文献   

18.
Adaptable Splatting for Irregular Volume Rendering   总被引:3,自引:0,他引:3  
By employment of a footprint table in conducting intensity integration, splatting method has been very successful in rendering regular data volumes. Recently, the method has also been extended to render irregular data volumes. However, since samples in irregular volumes vary greatly in size and shape, the footprint table is unable to be employed in an efficient manner. This hinders the application of splatting approach from being used in the irregular volume case. In this paper, an adaptable splatting method is proposed, which provides an efficient way to integrate color intensity in terms of footprint table for the samples in various sizes. Experiments show that the new method may be used to produce better images without extra expense.  相似文献   

19.
Global illumination effects are crucial for virtual plant rendering. Whereas real-time global illumination rendering of plants is impractical, ambient occlusion is an efficient alternative approximation. A tree model with millions of triangles is common, and the triangles can be considered as randomly distributed. The existing ambient occlusion methods fail to apply on such a type of object. In this paper, we present a new ambient occlusion method dedicated to real time plant rendering with limited user interaction. This method is a three-step ambient occlusion calculation framework which is suitable for a huge number of geometry objects distributed randomly in space. The complexity of the proposed algorithm is O(n), compared to the conventional methods with complexities of O(n^2). Furthermore, parameters in this method can be easily adjusted to achieve flexible ambient occlusion effects. With this ambient occlusion calculation method, we can manipulate plant models with millions of organs, as well as geometry objects with large number of randomly distributed components with affordable time, and with perceptual quality comparable to the previous ambient occlusion methods.  相似文献   

20.
In this paper we present a fast visualization technique for volumetric data, which is based on a recent non-photorealistic rendering technique. Our new approach enables alternative insights into 3D data sets (compared to traditional approaches such as direct volume rendering or iso-surface rendering). Object contours, which usually are characterized by locally high gradient values, are visualized regardless of their density values. Cumbersome tuning of transfer functions, as usually needed for setting up DVR views is avoided. Instead, a small number of parameters is available to adjust the non-photorealistic display. Based on the magnitude of local gradient information as well as on the angle between viewing direction and gradient vector, data values are mapped to visual properties (color, opacity), which then are combined to form the rendered image (MIP is proposed as the default compositing stragtegy here). Due to the fast implementation of this alternative rendering approach, it is possible to interactively investigate the 3D data, and quickly learn about internal structures. Several further extensions of our new approach, such as level lines are also presented in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号