首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hongyan Yang 《Materials Letters》2007,61(13):2789-2793
The fabrication of conductive and ferromagnetic hollow composite microcapsules with polypyrrole (PPy) shell and Fe3O4 inner-wall was successfully accomplished via a sequential processes of electrostatic attraction between negatively charged polystyrene (PS) latex and Fe3O4 nanoparticles, the polymerization of pyrrole and the dissolution of PS core. The morphology of the hollow composite microcapsules was testified by TEM and XRD. The hollow microcapsules possessed a conductivity of 10 2 S/cm, and their ferromagnetic property was attributed to the presence of magnetic Fe3O4 nanoparticles on the inner-wall. The improved thermal stability of the hollow microcapsules could be interpreted due to the interaction between Fe3O4 nanoparticles and PPy chains.  相似文献   

2.
Sintered Al2O3 is brazed with 304 stainless steel (SS) using 97(Ag28Cu)3Ti active filler alloy at 900 and 1000 °C. The interfaces developed during brazing have been systematically characterized and the results show that the thickness of the interfaces is 15–20 μm and 10–15 μm on SS side and Al2O3 side respectively. The presence of TiO, Cu3Ti3O and FeTi phases at the Al2O3 interface and FeTi, and Fe35Cr13Ni3Ti7 phases at the SS interface have been confirmed through XRD and TEM studies. Microhardness analysis across the brazed interfaces suggest that the SS interface (300–600 Hv) is harder than that of the SS substrate (200–250 Hv) whereas alumina interface (550–900 Hv) is softer than that of the alumina substrate (∼ 1900 Hv). It is concluded that the various new phases that are formed during brazing are responsible for the variation in the hardness values.  相似文献   

3.
A composite of Fe2O3 capped by conductive polyaniline (PANI) was synthesized by a facile two-step method through combining homogeneous Fe2O3 suspension prepared by a hydrothermal method and in-situ polymerization of aniline. As anode material for lithium ion batteries, the Fe2O3/PANI composite manifests very large discharge capacities of 1635 mAh g−1, 1480 mAh g−1 at large currents of 1.0 and 2.0 A g−1 (1C and 2C), respectively, as well as good cycling performance and rate capacity. The enhancement of electrochemical performance is attributed to the improved electrical conductivity and effective ion transportation of the composite electrode, in that, PANI keeps the Fe2O3 nanorods uniformly connected and offers conductive contact between the electrolyte and the active electrode materials.  相似文献   

4.
We report the solution auto-combustion (AC) process for the rapid synthesis of Fe3O4 nanoparticles derived from the sol–gel (SG) process. The citric acid (CA) and tartaric acid (TA) is used as gelling agents in the SG process, where the citric acid turns into a fuel that combusts the gel and yields a highly magnetic crystalline phase Fe3O4 nanoparticles in one step with an average particle size of 50 nm. In contrast, the citric acid at different concentrations and tartaric acid at any concentrations do not lead to any combustion process and yield amorphous iron oxides. Upon annealing, these CA and TA derived iron oxide samples are turned to crystalline phase α-Fe2O3 particles. In contrast, the as-synthesized AC sample (i.e. Fe3O4) is oxidized to γ-Fe2O3 phase, which is confirmed from their respective XRD, Rietveld refinement and XPS studies. All the synthesized iron oxide phases showed broad visible light absorption. The room temperature M?H hysteresis curves obtained from VSM revealed that the Fe3O4 and α-Fe2O3/γ-Fe2O3 phases exhibit super-paramagnetic and ferromagnetic properties, respectively. The photocatalytic efficiencies of the samples are found to be in the order of Fe3O4 > γ-Fe2O3 > α-Fe2O3 with 98, 87, 79/73% degradation of rhodamine B dye at the end of 3 h and H2 evolution rate over these systems is found to be 2.1, 1.3 and 0.92/0.89 mmol/h/g, respectively under simulated solar light irradiation. The photocatalytic recycle studies demonstrated that all the synthesized photocatalysts possess excellent chemical and photo-stabilities.  相似文献   

5.
Shailja Tiwari 《Thin solid films》2009,517(11):3253-3256
Magnetite (Fe3O4) thin films are prepared by pulsed laser deposition using an α-Fe2O3 target on silicon (111) substrate in the substrate temperature range of 350 °C to 550 °C. X-ray diffraction (XRD) measurement shows that the film deposited at 450 °C is a single phase Fe3O4 film oriented along [111] direction. However, the film grown at 350 °C reveals mixed oxide phases (FeO and Fe3O4), while the film deposited at 550 °C is a polycrystalline Fe3O4. X-ray photoelectron spectroscopy study confirms the XRD findings. Raman measurements reveal identical spectra for all the films deposited at different substrate temperatures. We observe abrupt increase in the resistivity behavior of all the films around Verwey transition temperature (TV) (125 K-120 K) though the transition is broader in the film deposited at 350 °C. We observe that the optimized temperature for the growth of Fe3O4 film on Si is 450 °C. The electrical transport behavior follows Shklovskii and Efros variable range hopping type conduction mechanism below TV for the film deposited at 450 °C possibly due to the granular growth of the film.  相似文献   

6.
Controlled radical polymerization based on 1, 1-diphenylethylene (DPE method) was used to prepare pH-responsive magnetic composite microspheres. By this method, Fe3O4/Poly (acrylic acid-stat-methyl methacrylate-block-(2-dimethylamino) ethyl methacrylate) (Fe3O4/P(AA-MMA-DMA)) microspheres were prepared via emulsifier free emulsion polymerization of acrylic acid (AA), methyl methacrylate (MMA) and (2-dimethylamino) ethyl methacrylate (DMA) using 1, 1-diphenylethylene (DPE) as radical control agent in the presence of Fe3O4 nanoparticles. The structure and properties of Fe3O4/P (AA-MMA-DMA) microspheres were characterized by IR, 1H NMR, SEC-MALLS, TEM, TGA, VSM and DLS. The application of Fe3O4/P (AA-MMA-DMA) microspheres in controlled release of drug was also investigated. It was found that the DPE method allowed the preparation of pH-responsive magnetic composite microspheres, and Fe3O4/P (AA-MMA-DMA) microspheres obtained were pH-responsive, perfect sphere-shaped morphologies, superparamagnetism with a saturation magnetization of 14.36 emu/g, and high magnetic content with a value of 29%. Moreover, Fe3O4/P (AA-MMA-DMA) microspheres could control the release of phenolphthalein in a buffer solution by adjusting the pH value.  相似文献   

7.
Fe3BO6 can be an ideal compound for devising functional magnetic and dielectric properties in a single material for multiple applications such as electrodes, gas sensors, or medical tools. Useful to tailor such properties, here we report on a self-controlled Fe3BO6 growth in a specific shape of nanorods from a supercooled liquid precursor (an inorganic polymeric liquid or glass) of an initial composition (100 − x)B2O3 − xFe2O3, x = 40–50 mol%. B2O3 as a strong glass former co-bridges the Fe3+ ions in oxygen polygons primarily in a 2-D interconnected polymer network so that it dictates preferably a 1-D directional growth on the reaction Fe3+ species in form of a compound Fe3BO6, a favorable phase to nucleate and grow when annealing a precursor at 500–800 °C in ambient air. Distinct nanorods with a diameter ∼200 nm and 40–100 μm length have been formed on 10–15 min annealing a sample in microwave at moderate temperature 550 °C. A bonded surface B2O3 layer (15–25 nm thickness) has grown on the Fe3BO6 of the nanorods in situ in a specific structure. XPS bands in the Fe3+, B3+ and O2− species confer this model structure. A local BO3 → BO4 conversion has incurred in the boroxol (B3O4.5)n, n → ∞, rings in the surface layer, showing three distinct IR bands at 1035, 1215 and 1425 cm−1.  相似文献   

8.
The current study focused on preparing S-scheme heterojunction Fe2O3-PANI nanocomposite and pristine Fe2O3 using surfactant-assisted sol–gel and polymerization routes. The structural conformation was assessed through XRD diffractograms that confirmed the Fe2O3 phase in both samples. FTIR data traces the metal–oxygen and carbon-related bonds. PL results showed that the recombination rate is retarded in nanocomposite. TEM images confirmed the covering of PANI over Fe2O3. EDX mapping showed that Fe, C, N, and O were present in the grown nanocomposite. XPS study revealed the binding energies of constituent atoms. The optical energy bandgap 2.8 and 2.7 eV for Fe2O3 and Fe2O3-PANI was observed through UV–Vis analysis. The photocatalytic test against methyl blue (MB), eosin yellow (EY), and methyl red (MR) dyes were executed for 50 min under direct sunlight. The Fe2O3-PANI showed 99.8, 98.5, and 99.6% degradation efficiency against MB, EY, and MR dyes, respectively, which was higher than Fe2O3. The recyclability assessment confirmed the reusability upto four cycles. The antimicrobial property against E. coli, P-aeruginosa, K-pneumoniae, S. aureus, and P. vulgaris bacterial strains revealed a higher response for Fe2O3-PANI with the zone of inhibition 30, 31, 31, 30, and 30 nm, respectively. The enhanced performance of Fe2O3-PANI is being credited to S-scheme heterostructure supported with PANI, which can hinder the recombination process and support electron/hole separation. The results indicated that the as-grown nanocomposite could be a promising candidate against bacterial disinfection and an excellent stable photocatalyst.  相似文献   

9.
The system Fe2O3-In2O3 was studied using X-ray diffraction,57Fe Mössbauer spectroscopy and infrared spectroscopy. The samples were prepared by chemical coprecipitation and thermal treatment of the hydroxide coprecipitates. For samples heated at 600 °C, a phase, α- (Fe1?x In x )2O3, isostructural with α-Fe2O3, exists for 0?x?0.8, and a phase C-(Fe1?x In x )2O3, isostructural with cubic In2O3, exists for 0.3?x?/1. In the two-phase region these two phases are poorly crystallized. An amorphous phase is also observed for 0.3?x?0.7. For samples heated at 900 °C the two-phase region is wider and exists for 0.1?x?0.8 with the two phases well crystallized. In these samples an amorphous phase is not observed.57Fe Mössbauer spectroscopy of samples prepared at 600 °C indicated a general tendency of the broadening of spectral lines and the decrease of numerical values of the hyperfine magnetic field (HMF) with increasing molar fraction In2O3 in the system Fe2O3-In2O3. The samples prepared at 900 °C, in the two-phase region, are characterized by a constant HMF value of 510 kOe at room temperature. Infrared spectroscopy was also used to follow the changes in the infrared spectra of the system Fe2O3-In2O3 with gradual increase of molar fraction of In2O3. A correlation between X-ray diffraction, Mössbauer spectroscopic and infrared spectroscopic results was obtained.  相似文献   

10.
《Materials Letters》2007,61(14-15):2947-2951
Pure Fe2O3/TiO2 catalysts (1–35 wt.% Fe2O3) and Li-impregnated Fe2O3/TiO2 catalysts (1–10 wt.% Li2O) were prepared. The structural characteristics of pre-calcined samples were examined by using X-ray diffraction (XRD), thermogravimetric analysis (TGA) and ESR techniques. The surface acidity was measured by the adsorption of n-butylamine in non-aqueous media. The catalytic conversion of 2-propanol at 320–360 °C using the microcatalytic pulse technique was studied.XRD of 650 °C-calcination products showed the existence of pure oxide phases as well as other spinels depending on the chemical composition. ESR spectra indicated the existence of Fe(III) in α-Fe2O3 phase and in spinel phase. The chemical composition, surface acidity of the catalyst and reaction temperature affect the catalytic conversion of 2-propanol.  相似文献   

11.
Ce1 − xFexO2 − δ solid solution films were prepared on amorphous silica substrates by laser chemical vapor deposition using metal dipivaloylmethanate precursors and a semiconductor InGaAlAs (808 nm in wavelength) laser. X-ray diffraction revealed the formation of single Ce1 − xFexO2 − δ phase at x ≤ 0.15, while CeO2 and Fe2O3 phases were found for higher Fe content. Highly (100)-oriented Ce1 − xFexO2 − δ (x = 0.02) films were obtained at laser power, PL = 50-200 W and deposition temperature, Tdep = 800-1063 K. Lotgering factor (200) was calculated to be above 0.8 for films prepared at PL = 50-150 W. X-ray photoelectron spectroscopy revealed the presence of Fe3+, Ce4+ and Ce3+ on solid solution films. Cross-sectional transmission electron microscope images disclosed a film columnar feather-like structure with a large number of nano-scale interspaces. Deposition rates were 2 or 3 orders of magnitude higher than those reported for conventional metal organic chemical vapor deposition of CeO2.  相似文献   

12.
The solid-solid interactions between nanosized pure and NiO-substituted ferric and titanium(IV) oxides have been investigated using XRD technique and microstructure studies, also magnetic properties were studied using vibrating samples magnetometer (VSM). The amounts of substituting Ni2+ were x = 0, 0.2, 0.4, 0.6, 0.8 and 1 mole. A mixture equimolar proportions of finely powdered Fe2O3 and TiO2 were mixed with NiO, ball milled, compressed at 250 kg/cm2 and fired at 1200 °C for 4 h.The obtained results showed that with substituting Ni2+ concentration x = 0 only Fe2TiO5 phase is present (∼80 nm) which showed a very small saturation magnetic flux density (Bs), remnant magnetic flux density (Br) and the maximum energy product (BH)max. By the addition of x = 0.2 NiO, new phases were observed NiTiO3 and NiFe2O4 of crystallite sizes 160 and 110 nm, respectively. By the increase of substituting Ni2+ concentration the NiTiO3 and NiFe2O4 phases increased on the expense of Fe2TiO5 up to x = 0.4, then the increase in substituting Ni2+ concentration led to a decrease in Fe2TiO5 and NiTiO3 while NiFe2O4 increases which results in a great improvement of magnetic properties.All samples exhibit a catalytic activity towards H2O2 decomposition and the values of rate constant increase with increasing amount of Ni2+ substituting. The most acidic active sites are shown by specimens substituted with x = 0 this concludes that H2O2 decomposition is not favored on acidic active sites.  相似文献   

13.
The paper presents the experimental results showing that the crystalline phase of the nano-particles, synthesized in a DC transferred arc thermal plasma reactor, critically depend on the operating pressure in the reaction zone. The paper reports about the changes in crystalline phases of three different compounds namely: aluminium oxide (Al2O3), aluminium nitride (AlN) and iron oxide (FexOy) synthesized at 760 Torr and 500 Torr of operating pressures. The major outcome of the present work is that the phases having higher defect densities are more probable to form at the sub-atmospheric operating pressures. The variations in the crystalline structures are discussed on the basis of the change in the temperature during the nucleation process, prevailing at the boundary of the plasma, on account of the ambient pressures. The as-synthesized nano-particles were examined by X-ray diffraction analysis and transmission electron microscopy. In addition, the confirmatory analysis of the crystalline phases of iron oxides was carried out with the help of Mössbauer spectroscopy.  相似文献   

14.
In this paper, a one-pot sol–gel method was used to synthesize magnetic hollow silica through Pickering emulsion route. The mechanical strength of as-prepared magnetic hollow silica was adjusted and investigated. It was found that the emulsion droplet in Pickering emulsion was solely stabilized by cetrltrimethylammionium bromide (CTAB)-modified Fe3O4 particles while the silica source originally dispersed in oil phase was hydrolyzed at the emulsion droplet interface. This led to the formation of silica that then coated on the interface of the emulsion droplet to create magnetic hollow silica after being washed and dried. Controlling the hydrolyzing rate and degree of silica source and enhancing the binding force between silica and Fe3O4 nano particles can improve the mechanical strength of magnetic hollow silica.  相似文献   

15.
Bi2Fe4O9 have been successfully prepared using ethylenediaminetetraacetic (EDTA) acid as a chelating agent and ethylene glycol as an esterification agent. Heating of a mixed solution of EDTA, ethylene glycol, and nitrates of iron and bismuth at 140 °C produced a transparent polymeric resin without any precipitation, which after pyrolysis at 250 °C was converted to a powder precursor for Bi2Fe4O9. The precursors were heated at 400–800 °C in air to obtain Bi2Fe4O9 powder and differential scanning calorimetry (DSC), thermogravimetric (TG), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) techniques were used to characterize the precursors and the derived oxide powders. XRD analysis showed that well-crystallized and single-phase Bi2Fe4O9 with orthorhombic symmetry was obtained at 700 °C for 2 h and BiFeO3 and Fe2O3/FeCO3 were intermediate phases before the formation of Bi2Fe4O9. Bi2Fe4O9 powders show weak ferromagnetism at room temperature.  相似文献   

16.
Phase equilibria involving spinel solid solutions, delafossite, and hematite in the Fe–Cu–O system are studied by emf measurements in solid-electrolyte galvanic cells. The results demonstrate that, above 1250 K, Fe3O4 and CuFe2O4 form a continuous series of solid solutions. At lower temperatures, the solid solution disproportionates with the formation of delafossite and Fe2O3, and two spinel solid solutions appear: one based on Fe3O4 and the other based on Cu2FeO4. The compositions of the spinel phases in equilibrium with delafossite and Fe2O3 are determined in the range 1100–1250 K.  相似文献   

17.
The oxidation of Fe in pure oxygen between 400 °C and 600 °C has been investigated in order to obtain insight into the mechanism of the spontaneous formation of α-Fe2O3 nanowires. By varying the oxidation temperature, Fe can be oxidized to form Fe2O3/Fe3O4/FeO/Fe or Fe2O3/Fe3O4/Fe layered structure, followed by hematite nanowire growth on the outer layer of hematite (Fe2O3). It is observed that Fe2O3 nanowires have a bicrystal structure and form directly on the top of the underlying Fe2O3 grains. It is shown that the compressive stresses generated by the volume change accompanying the Fe2O3/Fe3O4 interface reaction stimulate Fe2O3 nanowire formation and that the Fe2O3 nanowire growth is via surface diffusion of Fe cations supplied from the outward grain boundary diffusion through the Fe2O3 layer. This principle of nanowire formation may have broader applicability in layered systems, where the stress gradient in thin layers can be introduced via solid-state interfacial reaction or other means.  相似文献   

18.
About 1.05 µm-thick Pb(Zr0.5Ti0.5)O3 (PZT) films containing Fe3O4 nanoparticles were deposited on LaNiO3-coated silicon substrates through a sol-gel technique. Fe3O4 nanoparticles were effectively dispersed into PZT solution under the involvement of polyvinylpyrrolidone. X-ray diffraction confirmed the coexistence of PZT and Fe3O4 phases without other impurity phases. Scanning electron microscope revealed that the thick composite films possess well-defined and crack-free microstructure. The composite films exhibit good ferroelectric and ferromagnetic properties at room temperature. An obvious magnetodielectric effect has been demonstrated in the Pb(Zr0.5Ti0.5)O3/Fe3O4 composite films. Magnetic field induced change in ferroelectric polarization loop may support the possible magnetoelectric coupling between PZT and Fe3O4 phases.  相似文献   

19.
Graphite‐MoS2‐Fe2O3 (Fe3O4) nano‐composite lubricating coatings were prepared on the surfaces of non‐copper coated solid wires by a mechanical coating technique. The tribological behaviours of graphite‐MoS2‐Fe2O3 (Fe3O4) coatings at the rubbing interfaces of welding wires against the contact tube were investigated. The results demonstrate that the lubricating properties of graphite‐Fe3O4 coatings outperform the lubricating properties of graphite‐Fe2O3 coatings. The anti‐wear performance of the contact tube is strengthened with increasing nano‐MoS2 contents. Layers of protective tribofilms are formed at the rubbing interfaces of welding wires against a contact tube by tribochemical reaction among lubricants. The tribofilms are composed of FeO, MoO3 and FeMoO4 with excellent lubricating properties. They can avoid direct contact of welding wires against the contact tube, thus decreasing contact tube wear. With the transition of the contact tube wear from mild to severe, the dominant wear mechanisms of contact tube change from fatigue peeling and oxidative wear to abrasive wear and arc ablation.  相似文献   

20.
Biobased ternary nanocomposites can stabilize enzymes for greater stability, catalytic activity and easy recovery. This study aimed to optimize biogenic silica/magnetite/graphene oxide nanocomposite supported Candida rugosa lipase (CRL/SiO2/Fe3O4/GO) for ethyl valerate (EV) synthesis and characterize the biocatalysts’ physicochemical properties and operational stability. CRL conjugated-oil palm leaves-derived biogenic SiO2/Fe3O4/GO nanocomposite showed a maximum immobilized protein of 44.13 ± 2.1 mg/g with a specific activity (534.87 ± 9.5 U/mg), than free CRL (≥700 U/mg). GL-A-SiO2/Fe3O4/GO exhibited the highest surface area (260.87 m2/g) alongside superior thermal stability in TGA/DTG. XRD revealed an amorphous SiO2 (crystallinity = 26.7%), while Fe3O4 existed as cubic spinel crystal (crystallinity = 90.2%). Taguchi Design-optimization found that CRL/SiO2/Fe3O4/GO best catalyzed the EV synthesis (90.4% in 3 h) at 40 ℃ using 3 mg/mL of biocatalyst, valeric acid/ethanol molar ratio of 1:2, in 10% (m/v) molecular sieves with stirring in heptane at 200 rpm. EV production was confirmed by FTIR- (C=O: 1738 cm?1 and C–O–C: 1174 cm?1) and GC–MS ([M]+ m/z = 130, C7H14O2). CRL/SiO2/Fe3O4/GO’s reusability for 11 successive esterification cycles demonstrated the SiO2/Fe3O4/GO’s exceptional hyperactivation and stabilization properties on immobilized CRL. These findings conveyed the SiO2/Fe3O4/GO’s efficacy to alter CRL's physicochemical properties and operational stability for catalyzing higher yields EV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号