首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silicon nanowires (SiNWs) were synthesized through the hydrogen radical-assisted deposition method. Voluminous indium (In) metal catalysts with smooth spherical structures were successfully fabricated from indium oxide films after hydrogen radical treatment for 5 min. Their sizes were widely distributed, ranging from several nm to about 150 nm. Subsequently, the large quantities of SiNWs were synthesized using the hydrogen-radical-assisted deposition method. Their diameters typically ranged from several nm to several hundred nm, and their lengths extended to about 10 μm. The SiNWs were composed of well-crystallized silicon cores and hydrogenated amorphous outer layers.  相似文献   

2.
The ability to control the size, orientation, composition and morphology of silicon nanowires (SiNWs) presents an ideal platform for exploring a wide range of potential technological applications. In this work, we demonstrated the detail study of optical properties of highly disordered core–shell SiNWs that were grown by atmospheric pressure chemical vapor deposition. The microstructure of SiNWs was characterized by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The TEM study shows that the SiNWs consists of crystalline core silicon surrounded by thick amorphous silicon oxide. The total diameter including the outer SiO2 sheath was 60–80 nm. The reflection and absorption of a-SiO2/c-SiNWs were affected by process parameter like silane flow rate and hydrogen dilution. The optical reflection of SiNWs decreased with increasing photon energy across the visible and near the ultraviolet range, approaching moth's eye antireflection. Specifically, a minimum reflection of 2–3% was observed at 400 nm. The band gap is estimated at ∼1.32 eV by quasi-direct band Tauc's plot. The sum of localized states at the band edge is ∼0.53 eV. Straight SiNWs have lower reflection than those of nanoparticles mixed SiNWs and coil mixed SiNWs. The reflection and absorption of SiO2/SiNWs were confirmed to respond strongly to infrared with increasing H2 flow rate.  相似文献   

3.
The generation of planar defects in silicon nanowires (SiNWs) synthesized by means of a vapor–liquid–solid (VLS) procedure using Au as a catalyst in an ultra-high vacuum chemical vapor deposition (UHV-CVD) system was investigated. Faceting, the formation of planar defects and the diffusion of Au in SiNWs occurred simultaneously, proportional to the growth temperature and the ratio of the H2 precursor gas. The planes located on the sidewalls of the wire after Au diffusion were faceted (1 1 1) and (1 0 0) surfaces, which represent equilibrium configurations of Si due to surface energy minimization during rapid wire growth under unstable conditions. Moreover, {1 1 1} twin defects were formed on the sidewalls of the faceted boundaries where the Au clusters were mainly located, due to the surface tension of the Au atoms, resulting in clusters at the liquid/solid interfaces in SiNWs with a 〈1 1 1〉 growth direction.  相似文献   

4.
Silicon nanowires (SiNWs) with the length of several hundreds of micrometers and an average diameter of 15 nm were successfully synthesized via a thermal-evaporation oxide-assisted process. Then, a convenient method was applied to metallize the SiNWs just by dipping them into an aqueous deposition solution. During the metallization process, which is a redox reaction, gold nanoparticles (NPs) were prepared on SiNWs surface to confine the particle size and prevent agglomeration during the preparation and utilization of gold NPs. The synthesized SiNWs decorated with gold NPs were utilized to modify the glassy carbon electrode. Electrochemical measurements displayed that the modified electrode showed high sensitivity for dopamine (DA) detection.  相似文献   

5.
This study synthesized the nanocrystalline diamond/amorphous carbon (NCD/a-C) composite films by the microwave plasma-enhanced chemical vapor deposition (MPCVD) system with Ar/CH4/N2 mixtures. A localized rectangular-type jet-electrode with high density plasma was used to enhance the formation of NCD/a-C films, and a maximum growth rate of 105.6 µm/h was achieved. The content variations of sp2 and sp3 phases via varying nitrogen gas flow rates were investigated by using Raman spectroscopy. The NCD/a-C film which synthesized with 6% nitrogen concentration and no hydrogen plasma etching treatment possessed a low turn-on electric field of 3.1 V/µm at the emission current of 0.01 µA.  相似文献   

6.

Herein, titanium dioxide (TiO2)-coated vertically aligned silicon nanowires (SiNWs/TiO2) were fabricated and evaluated for photocatalytic degradation of organic dyes. Aligned SiNWs arrays were prepared by facile metal-assisted chemical-etching process with varying the etching time that was followed by TiO2 nanoparticles coating using sputtering technique. The TiO2 film crystallized in pure anatase phase with an average crystalline size of 50 nm, as was elucidated with X-ray diffraction studies. SEM analysis showed nanowires with varying lengths from 2.5 to 13.5 µm and confirmed the homogenous surface decoration with TiO2. The homogeneous distribution of TiO2 nanoparticles on nanowires was co-evidenced with Energy-Dispersive X-ray spectroscopy (EDX) and Raman spectra analysis. The developed SiNWs/TiO2 was exploited for photocatalytic degradation of methylene blue; the role of hydrogen peroxide was also elucidated. The highest photocatalytic efficiency of 96% was achieved for SiNWs/TiO2 with optimum nanowire length of 3.5 μm. The developed photocatalyst was found to be almost stable even after 190 days (~?5 months) and could be used as reusable and easily removable photocatalysts. The current study highlighted the SiNWs/TiO2/H2O2 system as excellent candidate for water remediation applications.

  相似文献   

7.
《Materials Letters》2006,60(17-18):2125-2128
Silicon nanowires (SiNWs) have been catalytically synthesized by heat treatment of Si nanopowder at 980 °C. The SiNWs comprise crystalline Si nanoparticles interconnected with metal catalyst. The formation mechanism of nanowires generally depends on the presence of Fe catalysts in the synthesis process of solid–liquid–solid (SLS). Although gas phase of vapor–liquid–solid (VLS) method can be used to produce various of different nanowire materials, growth model based on the SLS mechanism by heat treatment is more ascendant for providing ultrafast growth of single-crystalline Si nanowires and controlling the diameter of them easily. The growth of single-crystalline SiNWs and morphology were discussed.  相似文献   

8.
Well-crystallized tin oxide films were successfully synthesized without additional heating by inductively coupled plasma assisted chemical vapor deposition (ICP-CVD). The degree of crystallization was affected by the ICP power and hydrogen flow rate. The substrate temperature was increased only up to 423-453 K by plasma heating, which suggests that the formation of the SnO2 crystals was not caused by plasma heating, but by enhanced reactivity of precursors in high density plasma. The micro-hardness of deposited tin oxide films ranged from 5.5 to 11 GPa at different hydrogen flow rates.  相似文献   

9.
Indium (In) catalyzed silicon nanowires (SiNWs) were synthesized by using hot-wire chemical vapor deposition (HWCVD) technique. Indium droplets were deposited on Si substrates by hot-wire evaporation of In wire, which was immediately followed by the growth of SiNWs from the droplets. Three sets of samples were prepared by varying the length of In wires, l, as 3, 1 and 0.5 mm. The sizes of In catalyst droplets decreased from 271.4 ± 66.8 to 67.4 ± 16.6 nm when the l was reduced from 3 to 0.5 mm. Larger size of In droplets (271.4 ± 66.8 nm) was found to induce the growth of worm-like NWs. The decrease in size of In catalyst droplets induced the formation of aligned and tapered NWs with smaller tips. The smallest value of tapering parameter, Tp of 40.5 nm/μm is correlated to the SiNWs induced by the smallest size of In droplets (67.4 ± 16.6 nm). The as-grown SiNWs showed high purity and good crystalline structure.  相似文献   

10.
Silicon carbide (SiC) thin films were prepared by hot-wire chemical vapor deposition in a CH4 gas flow rate of 1 sccm, and the influence of the gas flow rates of SiH4 and H2 gases on the film structure and properties were investigated. In the case of a H2 gas flow rate below 100 sccm, the SiC:H films obtained in SiH4 gas flow rates of 3 and 4 sccm were amorphous. On the other hand, when the H2 gas flow rate was above 150 sccm, SiH4 gas flow rates of 4 and 3 sccm resulted in a Si-crystallite-embedded amorphous SiC:H film and a nanocrystalline cubic SiC film, respectively. It was found that gas flow rates were important parameters for controlling film structure.  相似文献   

11.
Tin-catalyzed silicon nanowires were synthesized for solar cells application. Voluminous silicon nanowires were fabricated on single crystalline silicon wafer. Optical reflectance and solar cell efficiency of the synthesized silicon nanowires were explored. The reflectance of as-synthesized silicon nanowires was obtained approximately 5% in the short wavelength region (λ < 500 nm). A short circuit current of 2.3 mA/cm2 and open circuit voltage of 520 mV for 1 cm2 SiNWs solar cell was obtained.  相似文献   

12.
Ning  Rui  Jiang  Yue  Zeng  Yitian  Gong  Huaxin  Zhao  Jiheng  Weisse  Jeffrey  Shi  Xinjian  Gill  Thomas M.  Zheng  Xiaolin 《Nano Research》2020,13(5):1459-1464

On-demand hydrogen generation is desired for fuel cells, energy storage, and clean energy applications. Silicon nanowires (SiNWs) and nanoparticles (SiNPs) have been reported to generate hydrogen by reacting with water, but these processes usually require external assistance, such as light, electricity or catalysts. Herein, we demonstrate that a porous SiNWs array, which is fabricated via the metal-assisted anodic etching (MAAE) method, reacts with water under ambient and dark conditions without any energy inputs. The reaction between the SiNWs and water generates hydrogen at a rate that is about ten times faster than the reported rates of other Si nanostructures. Two possible sources of enhancement are discussed: SiNWs maintain their high specific surface area as they don’t agglomerate, and the intrinsic strain of the nanowires promotes the reactivity. Moreover, the porous SiNWs array is portable, reusable, and environmentally friendly, yielding a promising route to produce hydrogen in a distributed manner.

  相似文献   

13.
Silicon nanowires have been successfully synthesized via wurtz-like reaction, using silicon tetrachloride and sodium in the presence of Co/Ni catalyzer at 500 °C In this process the sodium was used as reductant and flux. Transmission electron microscopy (TEM) shows that the nanowire cluster is about 10 nm in diameter and length up to several microns, and well aligned along their longitude direction. High-resolution transmission electron microscopy (HRTEM) images demonstrates that as-synthesized nanowires interlayer spacing are around 0.31 nm, corresponding well to the (111) lattice parameter of diamond-like crystalline silicon. Based on the experimental results, the possible wurtz reaction mechanism of the silicon nanowires (SiNWs) has been properly proposed.  相似文献   

14.
N-type nanocrystalline 3C-SiC films were prepared by hot-wire chemical vapor deposition from SiH4/CH4/H2 and N2 as a doping gas and the structural and electrical properties were investigated. The gas flow rates of SiH4, CH4 and H2 were 1, 1 and 200 sccm, respectively. As the N2 gas flow rate was increased from 0 to 10 sccm, the conductivity and the activation energy improved from 0.05 to 0.3 S/cm and from 45 to 28 meV, respectively. The Hall Effect measurement proved that the improvement of the electrical properties was caused by the increase in the carrier concentration. On the other hand, in the N2 gas flow rate between 10 and 50 sccm, the conductivity and the activation energy remained unchanged. The crystallinity deteriorated with increasing N2 gas flow rate. This gave rise to the unchanged electronic properties in spite of the increase in the intake of N atoms.  相似文献   

15.
K. Ahn  H.U. Lee  H.S. Ahn  S.G. Yoon 《Thin solid films》2010,518(14):4066-6919
Hydrogenated Al-doped ZnO (H:AZO) thin films were deposited on glass substrates at room temperature by radio-frequency magnetron sputtering at various hydrogen flow rates. The addition of hydrogen improved the resistivity of the H:AZO films significantly. A thin insulating layer was produced on H:AZO films by atmospheric pressure plasma with Ar/O2 reactive gas. The resistivity degenerated and the optical band gap of the oxygen plasma-treated H:AZO films decreased from 3.7 eV to 3.4 eV. This was attributed to a decrease in the hydrogen concentration at the film surface according to elemental depth analysis.  相似文献   

16.
《Materials Research Bulletin》2004,39(4-5):637-645
Nanopowder containing ZnO nanowhiskers and nanoparticles was synthesized by the oxidation of Zn vapor, at temperatures from 1050 to 1450 °C in a flow of Ar and O2 gas mixture. The morphology and structure of the nanowhiskers were dependent on the synthesis parameters such as evaporation temperature and the gas pressure. The nanowhiskers formed had a tetrapod shape with needle-like feet that become shorter and fatter on increasing temperature under a certain pressure range. The amount of Zn phase inside the nanowhiskers increased with increasing temperature. The Zn phase melted at temperature of 420 °C, which was confirmed by differential scanning calorimetry (DSC). The nanopowders showed strong sintering activity after they were pressed. The far infrared light was intensely absorbed by the ZnO tetrapod nanowhiskers.  相似文献   

17.
This paper presents the effects of hydrogen pressure, ambient temperature and pressure cycle pattern on fracture behavior of O-rings moulded from a peroxide-crosslinked EPDM rubber with white reinforcing filler under cyclic exposure to high-pressure hydrogen gas. By using a developed durability tester which enables the O-rings to expose cyclically high-pressure hydrogen gas, pressure cycle tests were performed at hydrogen pressures ranging from 10 to 70 MPa and ambient temperatures ranging from 30 to 100 °C under two pressure cycle patterns (test frequencies). The cyclic hydrogen exposure caused cracks in the O-rings, and their crack damage became more serious with an increase in the hydrogen pressure and the ambient temperature. The serious crack damage under high temperature is believed to be due to degradation of mechanical properties with increasing ambient temperature. At a hydrogen pressure of 10 MPa, cracks (blisters) caused by bubbles formed from supersaturated hydrogen molecules after decompression were observed. At a hydrogen pressure of 35 MPa or more, a large volume increase of the O-rings was observed by swelling; then, its volume increase induced extrusion fracture of the O-rings in addition to blister fracture. The crack damage also became more serious with a decrease in test frequency. The effect of the test frequency on the crack damage of the O-rings is presumed to be attributed to time-dependent crack growth behavior of the EPDM rubber.  相似文献   

18.
Si:H nanoparticles have been generated from 3 nm to 500 nm in count mean diameter (CMD) using a plasma chemical vapor deposition (CVD) system. In the present work, the nanoparticles are synthesized using cold plasma in order to get monodispersed size distribution with a combination of square wave modulated RF pulse plasma and a hydrogen gas pulse for better control of their size. The size of synthesized nanoparticles was measured by scanning mobility particle sizer (SMPS). The synthesis was carried out using pulse plasma with on-time of 1 s and off-time of 4 s. During 1 s on-time of plasma we added hydrogen gas pulses varying from 0.1 s to 0.9 s. Our results show that by utilizing dual pulse plasma and by controlling hydrogen gas pulse on-time we achieved smaller diameter Si nanoparticles. Hence, it is easier to generate smaller nanoparticles which generally have quantum effect and be utilized for various applications especially in solar cell application.  相似文献   

19.
Amorphous Si (a-Si) quantum dots (QDs) embedded in a silicon nitride film were prepared by a plasma-enhanced chemical vapor deposition (PECVD) technique using gaseous mixtures of silane, hydrogen and nitrogen. We observed that the Si QDs had an amorphous structure from the Raman spectroscopy measurement. The Fourier transform infrared (FTIR) spectra showed that the relative transmittance of the SiH bands decreased, but that of the NH bands increased, with increasing nitrogen flow rate. During the deposition of SiNx, the number of dangling bonds of silicon acting as nucleation sites increased. As the hydrogen flow rate increased the growth rate decreased, due to the reduction in the hydrogen partial pressure. The hydrogen and nitrogen gas flow rates were found to be important parameters for determining the size of the a-Si QDs. In addition, we observed that the PL peak shifted toward a higher energy with increasing hydrogen and nitrogen gas flow rates, which was attributed to the increase in the quantum confinement effect in the a-Si QDs.  相似文献   

20.
A compact additive manufactured flat-panel gas-gap heat switch operating at cryogenic temperature is reported in this paper. A guarded-hot-plate apparatus has been developed to measure the thermal conductance of the heat switch with the heat sink temperature in the range of 100–180 K. The apparatus is cooled by a two-stage GM cooler and the temperature is controlled with a heater and a braided copper wire connection. A thermal guard is mounted on the hot side of the device to confine the heat flow axially through the sample. A gas handling system allows testing the device with different gas pressures in the heat switch. Experiments are performed at various heat sink temperatures, by varying gas pressure in the gas-gap and with helium, hydrogen and nitrogen gas. The measured off-conductance with a heat sink temperature of 115 K and the hot plate at 120 K is 0.134 W/K, the on-conductance with helium and hydrogen gases at the same temperatures is 4.80 W/K and 4.71 W/K, respectively. This results in an on/off conductance ratio of 37 ± 7 and 35 ± 6 for helium and hydrogen respectively. The experimental results matches fairly well with the predicted heat conductance at cryogenic temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号