首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polystyrene (PS)/silica core/shell spheres were fabricated using mono-dispersed PS as templates by hydrolysis and condensation of two different silica precursors. The PS cores of PS/silica core/shell spheres were dissolved subsequently in the tetrahydrofuran medium to form mono-dispersed hollow silica spheres. The structures and morphologies of hollow silica spheres were characterized by scanning electron microscopy and transmission electron microscopy. Then, polyacrylate/hollow silica composite film forming agents were prepared via physical blending of polyacrylate and two different hollow silica spheres, and the water vapor permeability of their films were compared. The results showed that the structure of hollow silica spheres were very typical and obvious. The silica shell was continuous and uniform using tetraethylorthosilicate as precursor, which was accumulated by many silica seeds with size of 10–20 nm, and the thickness of silica shell was about 16.7 nm. However, the hollow silica spheres using tetraethylorthosilicate and vinyl triethoxysilane as precursors had mesoporous structure in the shell. The introduction of hollow silica spheres could significantly improve the water vapor permeability of polyacrylate film. At last, a possible mechanism for the formation of hollow silica spheres was proposed and the process of water vapor through polyacrylate/hollow silica composite films was modeled.  相似文献   

2.
Hollow spheres with mesoporous silica nanoparticles shell were synthesized with the use of cetyltrimethylammonium bromide (CTAB) and polystyrene (PS) hollow spheres as dual templates. The key to this study is that the uneven surface of the template provides nucleation sites for mesoporous nanoparticles, resulting in the formation of hollow spheres with mesoporous silica nanoparticles shell. The final products with hierarchical mesopores can be obtained through a simple one-step approach.  相似文献   

3.
Spherical colloidal particles with a hollow interior and a mesoporous shell are particularly useful for drug delivery and release because such spheres combine the unique properties of hollow interior (for storing the drug) with mesoporous shell (for controlled release). Hollow silica spheres (HSS) with a mesoporous shell were prepared via a sol-gel process in the presence of dual templates polystyrene spheres and cetyltrimethylammonium bromide for creating the hollow core and mesopore shell. The effect of the ratio of silica precursor over polystyrene spheres on particle morphology and pore structure of the HSS was investigated. The adsorption kinetics of methyl blue on the HSS was evaluated and correlated with the mesoporous shell structure.  相似文献   

4.
Hollow mesoporous carbon spheres (HMCSs) have been prepared by a simplified replication route from a solid silica core/mesoporous silica shell aluminosilicate (SCMS-Al) template, which was synthesized by directly incorporating aluminum species into the mesoporous framework during template synthesis. The size of HMCSs can be tuned between 80 and 470 nm by simply changing the diameters of SCMS-Al. The HMCSs have uniform mesopores with a narrow pore size distribution (3.4-4.1 nm), and high surface area, (890-1150 m2/g) and total pore volumes (0.75-1.15 cm3/g). The techniques of N2 sorption isotherms, TEM, EDX and SEM were used to characterize the as-synthesized spheres.  相似文献   

5.
Yolk–shell silica spheres consisting of a core and an outer shell were prepared by a one-step method using a new class of eco-friendly templates, trisiloxane-tailed surface active ionic liquids. The effects of pH, calcination, and template concentration were investigated in detail. Our results showed that yolk–shell silica spheres could be obtained only in alkaline conditions when using trisiloxane-tailed ionic liquids as templates. The particle diameter, core diameter, dimension of void space, and shell thickness, which we measured by transmission electron microscopy and nitrogen adsorption–desorption techniques, could be tuned by precisely varying the template concentration. The organosilicon component of the ionic liquid template contributes to the reaction during the formation of yolk–shell nanostructures, which leads to a firm silica sphere skeleton resulting in essentially identical morphology and void structure before and after calcination. This investigation provides a convenient approach to fabricate yolk–shell silica spheres, which may expand the application of organosilicon ionic liquids in the field of nanomaterials and could be expected to generate tailor-made yolk–shell silica with functionality in both the core and shell.  相似文献   

6.
Hollow silica SBA-16 spheres with cubic ordered mesoporous shells were synthesized by an emulsion-templating method, using Pluronic F127 as a structure-directing agent, tetraethyl orthosilicateas as a silica source and heptane as a cosolvent in the presence of NH4F. The size of these spheres is in the range of 10 to 30 μm. The shell is about 700 nm thick and consists of large pores, ~ 9 nm in diameter, arranged in a cubic order. After calcination, the spheres maintain their mesoporosity and show a high surface area of 822 m2/g. The formation mechanism of the silica hollow spheres is discussed.  相似文献   

7.
Spherical mesoporous silica was synthesized using a mixture of 1-methyl-3-octylimidazolium chloride and cetyltrimethylammonium bromide as the structure-directing agent. The obtained silica was characterized by X-ray powder diffraction, scanning electron microscope, transmission electron microscope, and 13C NMR spectroscopic techniques. The results show that the spherical silica possesses worm-like mesopores and larger mesopores, with the sizes about 6-50 nm. It is very interesting that the spherical mesoporous spheres were converted to hollow ones after reflux in boiling water. The treatment results in the generation of the hollow interior by dissolving the silica core. Meanwhile, the silica shell is well retained, which is confirmed by SEM and TEM images.  相似文献   

8.
To investigate the formation mechanism of berry-like polystyrene/silica (PS/SiO2) with carboxyl-functional templates through in-situ sol–gel process, different alkalis were adopted to catalyze the hydrolysis reaction of tetraethoxysilane (TEOS) and the morphology of composite particles was observed by TEM. The results showed that the weak acid–base interaction (–COO/–N+/–SiO) drove the silica particle nucleated and growth on the surface of PS spheres and berry-like structure can be easily adjusted by alkalis and volume ratio of ethanol/water. The present work implied that the weak acid–base interaction can be used to control the nano/micro or hierarchically structures. In addition, the particulate films were constructed by assembling these berry-like particles on the glass substrates. After surface modification with dodecyltrichlorosilane, hydrophobic surface can be obtained and the contact angle of water on the dual-sized structured surface can be adjusted.  相似文献   

9.
《材料科学技术学报》2019,35(10):2178-2186
Herein, we report a confined pyrolysis strategy to prepare mesoporous carbon nanospheres by which surface area of carbon spheres is increased, pore size is enlarged and effective N-doping is achieved. In this method, the mesoporous polymer sphere as carbon precursor and 2-methylimidazole as nitrogen precursor are encapsulated in a compact silica shell which provides a confined nano-space for the pyrolysis treatment. The in situ generated gases from mesoporous polymer sphere and 2-methylimidazole under pyrolysis diffuse into the pores of mesoporous polymer sphere in the confined compact silica shell, resulting in increased surface area, larger pore size and N-doping due to self-activation effect. As electrodes in supercapacitor, the N-doped mesoporous carbon nanospheres exhibit a significantly enhanced specific capacitance of 326 F g−1 at 0.5 A g−1, which is 2 times higher than that of mesoporous carbon spheres under unconfined pyrolysis condition, exhibiting its potential for electrode materials with high performance.  相似文献   

10.
This paper explores the capability of the “surface-protected etching” process for the creation of rattle-type SiO2@void@SiO2 colloidal structures featuring a mesoporous silica shell and a mesoporous movable silica core. The surface-protected etching process involves stabilization of the particle surface using a polymer ligand, and then selective etching of the interior to form hollow structures. In this paper, this strategy has been extended to the formation of rattle-like structures by etching SiO2@SiO2 core shell particles which are synthesized by a two-step sol gel process. The key is to introduce a protecting polymer of polyvinylpyrrolidone (PVP) to the surface of both core and shell in order to tailor their relative stability against chemical etching. Upon reacting with NaOH, the outer layer silica becomes a hollow shell as only the surface layer is protected by PVP and the interior is removed, while the core remains its original size thanks to the protection of PVP on its surface. This process can be carried out at room temperature without the need of additional templates or complicated heterogeneous coating procedures. The etching process also results in the rattle-type colloids having mesoscale pores with two distinct average sizes. In our demonstration of a model drug delivery process, such mesoporous structures show an interesting two-step elution profile which is believed to be related to the unique porous rattle structures. This article is published with open access at Springerlink.com  相似文献   

11.
In this study, biocompatible and biodegradable chitosan (CS) nanocapsules are successfully prepared in abundant and easily using carboxyl-functionalized polystyrene (PS) as sacrificial template and cross-linked CS with glutaraldehyde as the shell. First, the monodisperse functionalized PS templates be about 200 nm are made by emulsifier-free emulsion polymerization. Second, nanocapsules are accomplished by fabricating on the basis of chemical cross-linking on the surface of the PS template and removing the core via tetrahydrofuran. The templates and nanocapsules were characterized by FT–IR, 1H NMR, FESEM, and TEM. All the results confirmed that the nanocapsules are accomplished via this method. By dissolution of ibuprofen in the chloroform droplets when prepare the carboxyl-functionalized PS, drug-loaded nanocapsules are also fabricated. It is found that the loaded drug can be released again in a sustained manner for up to 80 h. The nanocapsules walls have a prominent effect in slowing down the drug release rate.  相似文献   

12.
《Materials Letters》2007,61(11-12):2378-2381
A commercial macrocellular polyurethane foam was used as template to fabricate macro/mesoporous silica and carbon monoliths. These materials have a cellular structure which is a faithful replica of that of the polymeric foam. In addition, they have a high surface area and a large porosity made up of accessible mesopores. The synthesis of silica monoliths was carried out by impregnating the polymeric foam with a mixture of a silica precursor and a surfactant. The carbon monoliths were prepared by using the silica monoliths as sacrificial templates. They retain the foamy vesicular structure and exhibit a high surface area of 1800 m2 g 1 and a large porosity made up of framework-confined mesopores of around 3.4 nm.  相似文献   

13.
A facile route for the fabrication of nanorattles composed of tunable silica spherical nanoparticles confined inside mesoporous carbon shells is presented. The synthetic strategy involves several steps: i) the synthesis of solid core/mesoporous shell silica microspheres, ii) the infiltration of the mesoporous shell with a carbon precursor and its conversion to carbon through a carbonization process and iii) the controlled dissolution of the silica by means of a soft etching agent (NaOH 1.5 M). Following this procedure, a variety of Silica@Carbon nanorattles of diameter ∼ 430 nm is produced. The diameter of the silica core can be uniformly tuned between 330 nm and 160 nm by varying the etching time in a range of 2 h-44 h. The rate constant for the dissolution process of the silica core was estimated to be k ≈ 1.2 × 10− 10 g cm− 2 s− 1. These nanorattles have a high BET surface area and a large pore volume, depending on the amount of silica in the composite.  相似文献   

14.
A simple room temperature synthesis of pure mesoporous silica by using a homemade and functional template: polystyrene microemulsion is reported. The process consists of HCl-catalysed sol-gel reactions of tetraethyl orthosilicate (TEOS) in polystyrene microemulsion, followed by removal of the template via solvent extraction or calcining. X-ray diffraction, Transmission Electron Microscope and N2 adsorption-desorption isotherms are then used to characterize the mesostructure. The results indicate that the synthesized mesoporous silica has a large BET surface area with more than 900 m2/g, large pore volume with more than 0.8 cm3/g and ordered mesopore-structure. This provides a possible way to control the meso-structure and pore size of mesoporous materials via potential functional templates.  相似文献   

15.
A simple route has been designed for the syntheses of a kind of electrocatalyst, i.e., hollow spheres with Au and excessive Pt nanoparticles in core and silica as shell. The Au@carbon spheres synthesized by hydrothermal process can act as the transitional templates, and the carbonaceous matrix can in situ reduce H2PtCl6·H2O solution and load with Pt nanoparticles, and then a slightly modified Stöber process was applied to encapsulate the structures with silica shell. Further calcination at high temperatures removed the carbon matrix to form the hollow spheres with Au and excessive Pt nanoparticles in core and silica as shell. This new kind of structures shows excellent electrocatalytic properties compared with that of similar hollow spheres but only with pure Pt nanoparticles inside, and it might provide an efficient way to improve the electrocatalytic property of a bulk Pt/GC electrode.  相似文献   

16.
Mesoporous carbon spheres serving as electrode materials for supercapacitors were synthesized by a facile polymerization-induced colloid aggregation method using melamines as a carbon precursor and commercial colloidal silica as a silica source for hard template. After the carbonization of as-formed resins-template composites at 1000 °C and the removal of the silica template by hydrofluoric acid, the resulting mesoporous carbon spheres with a diameter size of ∼5 μm, specific surface area (up to 1280 m2/g) and uniform pore size as large as 30 nm could be obtained. Due to the enriched nitrogen content and the large pore size of the mesoporous carbon spheres affecting the surface wettability, resistance, and ion diffusion process in the pores, the mesoporous carbon spheres showed a high specific capacitance of 196 F/g in 5 mol/l H2SO4 electrolytes at a discharge current density of 1 A/g.  相似文献   

17.
In this study, we provide a strategy to prepare the hollow silver spheres by accumulating the silver nanoparticles on the surface of 3-mercaptopropyltrimethoxysilane (MPTMS)-functionalized silica as templates, which was accomplished by the chemisorption between silver nanoparticles and thiol groups. Then, the resulting hollow silver spheres were obtained through the chemical wet etching process with 10 M HF solution. In conventional method, the fabrication of hollow silver spheres from core-shell spheres was not easy due to the difficulties in retaining the shell structures during core removal. The method in this paper could overcome this limitation. The major focus of study is on understanding the mechanism of formation of the hollow silver spheres through the self-assembly behavior by chemisorption between silver nanoparticles and thiol groups. The silver-coated silica and hollow silver spheres were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), and X-ray photoelectron spectroscopy (XPS).  相似文献   

18.
We demonstrate the reversible rod-to-sphere shape transition of gold/mesoporous silica core/shell nanorods, where the shell acts as an elastic nanocontainer during the shape change. It is shown, that elongated core/shell nanorods are transformed into spherical core/shell particles at 300 °C. The anisometric shape of the composite particles can be recovered upon in-situ seeded growth of the gold core. The mesoporous silica shell acts as a nanoscale confinement, enabling control over the growth procedure during the chemical reaction. The shell of the particles was found to be elastic; it shows conformal shape-change with the core material during the heating and the subsequent seeded growth process. The effect of the reaction conditions during the seeded growth on the resulting particle morphology was also investigated. It is demonstrated, that depending on the growth conditions, core/shell nanorods or larger core/shell nanospheres can be obtained. The shape transformation cycle can be repeated for the same system several times, where the break-up of the confining shell represents the physical limit of the process.  相似文献   

19.
This study introduces a novel gas-phase method for the synthesis of mesoporous silica nanoparticles (MSNs). The method is a two-step templating approach by first forming silicon-coated carbon structures in a hybrid microwave-plasma/hot-wall reactor followed by an annealing step to produce mesoporous silica with distinct nanostructure and porosity. Two different (sacrificial) carbonaceous templates have been prepared (plasma reactor) and coated (hot-wall reactor), 2D few-layer graphene (FLG) flakes and soot-like fractal aggregates. Results show that the wall thickness of the porous silica structures can be adjusted by changing the concentration of the silicon precursor (monosilane). High monosilane concentrations, however, result in solid silica particles after annealing. Using soot-like particle templates permitted to control of the shell thickness of the hollow porous particles, while the FLG template results in ultrathin silica sheets after heat treatment. The pore volume and specific surface area increase up to 263 m2 g−1 and 0.6 cm3 g−1, respectively, by the formation of hollow porous particles. An adsorption study on carbamazepine reveals up to ≈86% removal. The gas-phase aerosol-based template method presented here offers scalability and versatility, and it is capable of producing MSNs with a controlled structure and porosity by modifying the carbonaceous templates.  相似文献   

20.
Nearly monodisperse, mesoporous, colloidal silica spheres were treated with aminopropyltriethoxysilane and subsequently calcined to generate luminescent mesoporous colloidal silica (LMCS), with broad bimodal visible emission and high surface areas exceeding 700 m2/g. The combination of high surface area and localization of luminescence centers at the surface provides opportunities for exploring new efficient photophysical/photochemical relaxation processes with the metal-free/dye-free luminescent silica sol-gel materials. Addition of LMCS to solutions of TbCl3 or EuCl3 results in efficient lanthanide sensitization. The enhancement in lanthanide emission is accompanied by a quenching of LMCS emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号