首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以嵌段聚合物羟基化SBS(SBS-OH)为模板,乙酸锌和硫化钠为前驱物,制备了ZnS纳米粒子。采用紫外-可见吸收光谱(UV-Vis)、荧光光谱(PL)、广角X射线衍射(WAXD)及透射电子显微镜(TEM)对ZnS纳米粒子进行了表征。结果表明,SBS-OH可以在ZnS纳米粒子的生长过程中,起到较好的模板作用,随SBS-O...  相似文献   

2.
Son DI  Kim JH  Park DH  Choi WK  Li F  Ham JH  Kim TW 《Nanotechnology》2008,19(5):055204
The bistable effects of CdSe/ZnS nanoparticles embedded in a conducting poly N-vinylcarbazole (PVK) polymer layer by using flexible poly-vinylidene difluoride (PVDF) and polyethylene terephthalate (PET) substrates were investigated. Transmission electron microscopy (TEM) images revealed that CdSe/ZnS nanoparticles were formed inside the PVK polymer layer. Current-voltage (I-V) measurement on the Al/[CdSe/ZnS?nanoparticles+?PVK]/ITO/PVDF and Al/[CdSe/ZnS nanoparticles+?PVK ]/ITO/PET structures at 300?K showed a nonvolatile electrical bistability behavior with a flat-band voltage shift due to the existence of the CdSe/ZnS nanoparticles, indicative of trapping, storing and emission of charges in the electronic states of the CdSe nanoparticles. A bistable behavior for the fabricated organic bistable device (OBD) structures is described on the basis of the I-V results. These results indicate that OBDs fabricated by embedding inorganic CdSe/ZnS nanoparticles in a conducting polymer matrix on flexible substrates are prospects for potential applications in flexible nonvolatile flash memory devices.  相似文献   

3.
《Materials Letters》2007,61(23-24):4500-4503
This paper presents a new synthetic route to hybridize ZnS semiconductor nanoparticles and poly(vinyl alcohol) (PVA) based electrospinning nanofibers. At first, zinc ions are introduced onto the surface of carboxylic PVA nanofibers. Then sulfide ions are added to react with zinc ions to form ZnS nanoparticles. The average diameter of the nanofibers is about 300 nm, and the diameter of the ZnS nanoparticles is about 5 nm. The photoluminescence spectrum of ZnS/carboxylic PVA nanocomposites has a 60 nm blue shift compared with that of the corresponding bulk ZnS sample. The carboxylic PVA enhances the quantum effects of the ZnS nanoparticles.  相似文献   

4.
We studied the optical properties of poly(ethylene terephthalate) ion track membranes of 1.5, 0.5 and 0.05?μm?pores impregnated with luminescent semiconductor CdSe/ZnS nanocrystals of different diameters (2.5 and 5?nm). The nanocrystals were embedded from their colloidal solutions in toluene by the immersion of a membrane in a colloidal solution. Localization of quasi-isolated weakly interacting CdSe/ZnS nanocrystals in a loosened layer on the track pore wall surface along with the existence of empty pores was demonstrated. We observed also the spatial separation of nanocrystals of 2.5 and 5?nm in size along the 50?nm pores.  相似文献   

5.
We have investigated the photoelectrochemical properties of hybrid films of polythiophenes poly(4,4″dimethoxy-3′-methyl-2,2′:5′,2″ terthiophene) (PDM), poly(4,4″dipentoxy-3′-methyl-2,2′:5′,2″ terthiophene) (PDP), and cadmium sulfide/zinc sulfide (CdS(ZnS)) core-shell nanoparticles. Although CdS(ZnS) nanoparticles present enhanced exciton trapping, light harvesting by hybrid films was enhanced when compared to those of pure PDM and PDP films. This enhancement is explained in terms of electron and hole transfer mechanisms at different excitation wavelengths. The more efficient light harvesting of PDM/CdS(ZnS) when compared to that of PDP/CdS(ZnS) was attributed to its broader absorption spectrum and more efficient electron hopping.  相似文献   

6.
The electrochemical and photoelectrochemical biosensors based on glucose oxidase (GOD) and ZnS nanoparticles modified indium tin oxide (ITO) electrode were investigated. The ZnS nanoparticles were electrodeposited directly on the surface of ITO electrode. The enzyme was immobilized on ZnS/ITO electrode surface by sol–gel method to fabricate glucose biosensor. GOD could electrocatalyze the reduction of dissolved oxygen, which resulted in a great increase of the reduction peak current. The reduction peak current decreased linearly with the addition of glucose, which could be used for glucose detection. Moreover, ZnS nanoparticles deposited on ITO electrode surface showed good photocurrent response under illumination. A photoelectrochemical biosensor for the detection of glucose was also developed by monitoring the decreases in the cathodic peak photocurrent. The results indicated that ZnS nanoparticles deposited on ITO substrate were a good candidate material for the immobilization of enzyme in glucose biosensor construction.  相似文献   

7.
Yang J  Peng J  Zou R  Peng F  Wang H  Yu H  Lee J 《Nanotechnology》2008,19(25):255603
This paper describes the development of a novel and simple chemical route to mass production of mesoporous ZnS nanoparticles in high yield. XRD, FESEM, TEM, SAED, EDS and XPS analyses show that spherical nanoparticles are crystalline ZnS in a zinc-blende structure. The resulting nanoparticles have an average diameter of about 30 nm and pore sizes in the range of 3-6?nm. The formation of mesoporous nanostructures could be attributed to higher nucleation rate in the course of preparation that resulted in the quick aggregation of initial crystallites and the formation of pores between them. The as-prepared mesoporous ZnS exhibited excellent photocatalytic activities. This preparation method provides one possible route to the synthesis of other mesoporous structures for exploratory studies on the applications of mesoporous nanocrystals.  相似文献   

8.
ZnS nanoparticles were successfully synthesized by reflux under an alkaline medium. The nanoparticles were characterized by using X-Ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The optical properties of ZnS nanoparticles were examined by photoluminescence (PL) spectrum. The result shows that the as-synthesized ZnS nanoparticles had a cubic phase. SEM image shows that ZnS nanoparticles are basically in spherical shape and are homogeneous. The particle size was found to be in the range of 18 nm.  相似文献   

9.
ZnS nanoparticles with an average diameter of 10 nm were synthesized by a solvothermal method under easily controlled and mild conditions. A composite surfactant for the preparation of ZnS nanoparticles was reported in order to improve the hydrophilicity. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize ZnS nanoparticles. The selected area electron diffraction (SAED) pattern indicated that ZnS was of high crystalline. The photoluminescence (PL) properties and water solubility of ZnS were investigated too. The photoluminescence characteristics indicated that ZnS nanoparticles exhibited a strong luminescent at 450 nm. Results of the contact angle demonstrated that the hydrophilicity has been improved greatly.  相似文献   

10.
ZnS nanoparticles anchored on the single-walled carbon nanotubes (SWNTs) were fabricated by a chemical vapor deposition (CVD) method. The CVD method shows no selectivity for growth of ZnS nanoparticles on types and defects of the SWNTs, and thus ensures the uniform decoration of all SWNTs on the substrate. ZnS nanoparticles with a diameter of 10 nm were decorated on the SWNTs surface with an interparticle distance of about 20 nm. This method provides the possibility to realize the optimal configurations of ZnS nanoparticles on SWNTs for obtaining surface-enhanced Raman spectroscopy (SERS) of SWNTs. Investigations of mechanism reveal that charge transfer (a small amount of excitation electrons) from ZnS nanoparticles to SWNTs weakly affects Raman intensity, and the coupled surface plasmon resonance (SPR) formed from plenty of excitation electrons on the surface of ZnS nanoparticles contributes to the strong surface enhancement. It would be an alternative approach for SERS after metal (normally gold or silver) nanoparticles' decoration on the SWNTs surface.  相似文献   

11.
An inorganic nanoparticle suspension, for use in an inkjet ink, has been prepared using chemically synthesised ZnS:Mn nanoparticles with acrylic acid (AA) as a dispersant. AA was also used as a polymeric binder for the jetted ink, by heat-initiated polymerisation of the AA monomer into solid poly(acrylic acid) (PAA). The AA/ZnS:Mn nanoparticle suspension was mixed with surfactant and two co-solvents to achieve the appropriate rheological properties for jetting. The AA suspension, inks, and jetted films of PAA and ZnS:Mn showed strong orange-red photoluminescence (PL) at 600?nm under ultraviolet laser excitation. The emission colour of the ZnS:Mn nanophosphors was tunable over a wide range of wavelengths by using different excitation wavelengths. The most intense PL was observed for jetted inks containing approximately 0.8?w/w% ZnS:Mn nanoparticles. Addition of a cross-linking agent to the inks significantly improved the mechanical resilience of the polymerised films. All suspensions, inks and films were prepared using simple wet chemical methods and low-temperature processing, making them an inexpensive alternative to semiconductive conjugated polymers and suitable for use on temperature-sensitive substrates, such as polymers and paper.  相似文献   

12.
Mn2+-doped ZnS (ZnS:Mn) nanoparticles were prepared using bis(2-ethylhexyl) sulfosuccinate (AOT) reversed micelle method. Luminescence at 583-589 nm were observed in the ZnS:Mn nanoparticles and are ascribed to Mn2+ ion in the nanoparticles due to energy transfer from ZnS. The luminescence was enhanced by capping with alkanethiol. Mono-and multilayered films with the alkanethiol-capped ZnS:Mn nanoparticles were fabricated on quartz substrates by layer-by-layer method using self-assembled monolayer (SAM) of 1,6-hexanedithiol. The polarization degrees of luminescence for the monolayered films were enhanced by preparation under applying magnetic field. The enhancements are probably caused by magnetic orientation of the ZnS:Mn nanoparticles on the quartz substrates.  相似文献   

13.
Cobalt-doped Zinc sulfide (ZnS) nanoparticles were prepared by a simple chemical method using alkyl hydroxyl ethyl dimethyl ammonium chloride (YH) as capping agent. The structural and optical properties of prepared cobalt-doped ZnS nanoparticles have been characterized. X-ray diffraction patterns and transmission electron microscope images reveal pure cubic ZnS phase with size of about 5–2 nm for all cobalt-doped ZnS nanoparticles. The lattice constant of the samples decreases slightly by the introduction of Co2+ The absorption edge of the ZnS:Co2+ nanoparticles is blue-shifted as compared with that of bulk ZnS, indicating the quantum confinement effect. The photoluminescence emission band exhibits a blue shift for Co-doped ZnS nanoparticles as compared to the ZnS nanoparticles.  相似文献   

14.
Through a facile solvothermal method, the controlled preparation of ZnS nanocrystals with different phases and morphologies was achieved only by changing the organic additives. By adding the surfactant of sodium dodecyl benzene sulfonate (SDBS) into the reaction, the cubic heart-like ZnS nanoparticles with uniform size were obtained in a large scale. While, with the assistance of the biomolecule of alginic acid, the pure phase of hexagonal ZnS nanospheres assembled from small ZnS nanoparticles were synthesized. The optical properties of the obtained ZnS nanocrystals were investigated by ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) spectra. The quantum confinement effect could be observed clearly in ZnS nanoparticles.  相似文献   

15.
ZnS nanoparticles have been formed in a newly synthesized 1,3-bis-(p-iminobenzoic acid) indane (IBI) by exposing Zn2+ doped multilayered Langmuir-Blodgett (LB) film to H2S gas after the growth. The formation of ZnS nanoparticles in the LB film structure was verified by measuring UV-Visible absorption spectra. DC electrical measurements were carried out for thin films of IBI prepared in a metal/LB films/metal sandwich structure with and without ZnS nanoparticles. It was observed that ZnS nanoparticles in the LB films cause a blue-shift in the absorption spectra as well as a decrease in both capacitance and conductivity values. By analysing I-V curves and assuming a Schottky conduction mechanism the barrier height was found to be about 1.13 eV and 1.21 eV for IBI LB films without and with ZnS nanoparticles, respectively. It is thought that the presence of ZnS nanoparticles influences the barrier height at the metal-organic film interface and causes a change in electrical conduction properties of LB films.  相似文献   

16.
水热法一步合成ZnS/还原氧化石墨烯(ZnS/RGO)复合材料,通过XRD、FTIR、Raman、SEM分析溶剂(乙醇、水)对ZnS/RGO复合材料形貌和结构的影响。结果表明,以乙醇为溶剂制备的ZnS颗粒尺寸小、均匀分散在石墨烯片层上,在形成ZnS纳米颗粒的同时将氧化石墨烯(GO)还原成石墨烯。对亚甲基蓝(MB)的光催化结果显示,ZnS/RGO复合材料具有优异的光催化性能,其光催化速率是纯ZnS颗粒的3.7倍,石墨烯作为优良光生电子的传输通道和收集体能够降低光生电子-空穴对的重新结合率,极大提高了ZnS/RGO复合材料的光催化性能。   相似文献   

17.
The hydrothermally synthesized Ag-doped ZnS (ZnS:Ag) nanoparticles have been coated with inorganic shells by a chemical precipitation method. The ZnS:Ag/ZnS, ZnS:Ag/CdS, and ZnS:Ag/ZnO core–shell nanoparticles with different thickness of ZnS, CdS, and ZnO shells have been prepared. The effects of shells on the luminescence properties of ZnS:Ag cores have been investigated through the photoluminescence (PL) spectra and luminescence stabilities of products. In the core–shell nanoparticles involved here, the ZnO shell can most significantly enhance the luminescence of ZnS:Ag cores. The 450 nm emission intensity of ZnS:Ag/ZnO nanoparticles is up to 125 % of that of ZnS:Ag nanoparticles. However, the ZnO shell can hardly influence the luminescence stability under ultraviolet irradiation. The ZnS shell can only increase the luminescence of ZnS:Ag cores to some extent, but it can improve the luminescence stability under ultraviolet irradiation. Although the CdS shell can improve the luminescence stability to some extent, it quenches the luminescence of ZnS:Ag nanoparticles dramatically.  相似文献   

18.
The synthesis of wurtzite-type ZnS nanoparticles by an electric discharge submerged in molten sulfur is reported. Using a pulsed plasma between two zinc electrodes of diameter 5 mm in molten sulfur, we have synthesized high-temperature phase (wurtzite-type) ZnS nanocrystals with an average size of about 20 nm. The refined lattice parameters of the synthesized wurtzite-type ZnS nanoparticles were found to be larger than those of the reported ZnS (JCPDS card no 36-1450). Synthesis of ZnMgS (solid solution of ZnS and MgS) was achieved by using ZnMg alloys as both cathode and anode electrodes. UV-visible absorption spectroscopy analysis showed that the absorption peak of the as-prepared ZnS sample (319 nm) displays a blue-shift compared to the bulk ZnS (335 nm). Photoluminescence spectra of the samples revealed peaks at 340, 397, 423, 455 and 471 nm, which were related to excitonic emission and stoichiometric defects.  相似文献   

19.
Nearly monodisperse 3-nm ZnS nanoparticles capped with the mercaptoethanol were prepared in aqueous solution. During hydrothermal coarsening of ZnS nanoparticles, the evolution of optical properties and growth kinetics were investigated. As the particle size increased, the absorbance spectrum continued a size-dependent shift to long wavelength. A significant enhancement in photoluminescence was obtained during the growth, indicating the decrease of defects and the increase of ZnS crystallinity. The average particle size and size distribution were calculated from the absorption spectra, which revealed two-stage growth kinetics of ZnS nanoparticles.  相似文献   

20.
Zinc sulphide (ZnS) nanoparticles were prepared by an aerosol method from zinc acetate and sodium sulphide (Na2S) aqueous solutions. Aqueous solution of zinc acetate was dispersed into the form of microdroplets, which were introduced by airflow to vigorously stirred aqueous solution of Na2S, which was in excess. Microdroplets served as microreactors, so the reaction took place only in limited volume. Particle size distribution was studied by transmission electron microscopy and by dynamic light scattering measurements. In this work, the equation that allows us to predict the final size distribution of ZnS nanoparticles using exact concentration of zinc acetate was derived and ZnS nanoparticles with predicted mean particle diameter around 50 and 70?nm were successfully synthetised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号