首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
In this work layers of colloidal nanoparticles obtained by thermolysis of Co2(CO8) were deposited on substrate surface by drying a drop in air eventually combined with the application of a magnetic field, or by spin coating. The formation of arrays of particles on Si substrates covered by Si3N4 layer was studied by high-resolution scanning electron microscopy and particle arrays on carbon coated copper grids by transmission electron microscopy. The crystalline structure of Co particles and its temperature evolution were analyzed by X-ray diffraction in situ in He gas and ex situ in UHV up to 700 °C. Two-dimensional (2-D) arrays of particles were formed by different types of preparation. The most regular ordering was obtained with the application of magnetic field perpendicular to the substrate surface, where 2-D hexagonal ordered arrays with length and width both between 200 and 500 nm were observed. In external magnetic field also three-dimensional arrays of nanoparticles–columns were formed. In the as-deposited state the nanoparticles show a poorly developed fcc crystalline structure. Most significant structural changes appear in the temperature range 400–450 °C where a well-developed fcc Co phase forms.  相似文献   

2.
Assemblies of magnetic nanoparticles exhibit interesting physical properties arising from the competition of intraparticle dynamics and interparticle interactions. In ordered arrays of magnetic nanoparticles magnetostatic interparticle interactions introduce collective dynamics acting competitively to random anisotropy. Basic understanding, characterization and control of dipolar interaction effects in arrays of magnetic nanoparticles is an issue of central importance. To this end, numerical simulation techniques offer an indispensable tool. We report on Monte Carlo studies of the magnetic hysteresis and spin-dependent transport in thin films formed by ordered arrays of magnetic nanoparticles. Emphasis is given to the modifications of the single-particle behavior due to interparticle dipolar interactions as these arise in quantities of experimental interest, such as, the magnetization, the susceptibility and the magnetoresistance. We investigate the role of the structural parameters of an array (interparticle separation, number of stacked monolayers) and the role of the internal structure of the nanoparticles (single phase, core-shell). Dipolar interactions are responsible for anisotropic magnetic behavior between the in-plane and out-of-plane directions of the sample, which is reflected on the investigated magnetic properties (magnetization, transverse susceptibility and magnetoresistance) and the parameters of the array (remanent magnetization, coercive field, and blocking temperature). Our numerical results are compared to existing measurements on self-assembled arrays of Fe-based and Co nanoparticles is made.  相似文献   

3.
Room-Temperature Growth and Applications of Carbon Nanofibers: A Review   总被引:1,自引:0,他引:1  
$hboxAr^+$ion bombardment of carbon surfaces (both bulk carbon and carbon-coated substrates) induced the growth of conical protrusions, and either aligned or nonaligned carbon nanofibers (CNFs) grew on the tips without any catalyst even at room temperature. CNFs thus grown were 20$sim$50 nm in diameter and$hbox0.2sim hbox10 muhbox m$in length. Very interestingly, no CNF grew without cone bases, and more than one CNF never grew on the respective cone tips. The solely standing and densely distributed CNFs were successfully applied to CNF-based scanning probe microscope (SPM) tips and field electron emission (FEE) sources, respectively. Since the myriad applications are possible, sputter-induced CNFs are believed to be quite promising as one-dimensional nanomaterials.  相似文献   

4.
Self-organized inorganic nanoparticle arrays on protein lattices   总被引:1,自引:0,他引:1  
Cavities formed by proteins have been utilized as the reaction chamber for the fabrication of a range of inorganic nanoparticles, providing control of the size of particles by limiting growth and preventing agglomeration. In crystal form, proteins construct molecular arrays that can provide regularly arranged sites for nanoparticles. Here we report the fabrication of nanometric iron and indium particles using ferritin, an iron-storage protein. The indium nanoparticles thus formed have uniform spherical shape with diameter of 6.6 +/- 0.5 nm, while the iron nanoparticles are somewhat irregular in shape (5.8 +/- 1.0 nm). Regular two-dimensional arrays of these nanoparticles are successfully produced by crystallizing ferritin molecules on a water-air interface using the denatured protein film method. The lattice constant of these nanoparticle arrays is 13 nm with hexagonal packing, and arrays of more than 1 microm in area can be obtained by transfer onto silicon wafer.  相似文献   

5.
A new conceptual model for carbon nanoparticle formation in shock waves that is based on recent data of the temperature dependence for finite sizes of resulting particles and an abrupt increase in their refractive index during the change in particle sizes from 5 to 15 nm. The model is based on the two following physically distinct assumptions. First, the volumetric fraction of condensed carbon remains constant from complete decomposition temperatures for the initial carbon-containing molecules (1600–2000 K) up to evaporation temperature for carbon nanoparticles (3000–3500 K). Second, the surface growth rate for particles is determined by the rate of collisions between vapor molecules and particles. The proposed model allows an explanation of all observed regularities of the carbon nanoparticle growth, including a decrease in finite sizes of particles at a rise in temperature and a corresponding decrease in the time of particle formation.  相似文献   

6.
Self‐assembled cobalt particle arrays are formed by annealing, which cause agglomeration (dewetting) of thin Co films on oxidized silicon substrates that are topographically prepatterned with an array of 200‐nm‐period pits. The Co nanoparticle size and uniformity are related to the initial film thickness, annealing temperature, and template geometry. One particle per 200‐nm‐period pit is formed from a 15‐nm film annealed at 850 °C; on a smooth substrate, the same annealing process forms particles with an average interparticle distance of 200 nm. Laser annealing enables templated dewetting of 5‐nm‐thick films to give one particle per pit. Although the as‐deposited films exhibit a mixture of hexagonal close‐packed and face‐centered cubic (fcc) phases, the ordered cobalt particles are predominantly twinned fcc crystals with weak magnetic anisotropy. Templated dewetting is shown to provide a method for forming arrays of nanoparticles with well‐controlled sizes and positions.  相似文献   

7.
Fe-doped ZnO dilute magnetic semiconductor (DMS) nanowire arrays were fabricated in anodic aluminum oxide (AAO) membranes using electro-codeposition followed by long-time anneal process. The morphology, chemical composition and crystal structure were characterized by field emission scanning electron microscope (FE-SEM), high resolution transmission electron microscope (HRTEM) equipped with an energy dispersive x-ray spectrometer, and X-ray diffraction (XRD) spectroscopy. The results prove that the Fe has been successfully doped in the lattice of ZnO nanowire arrays and the estimated Fe atomic ratio is around 22%. Micro-superconducting quantum interference device (SQUID) shows that the nanowire arrays exhibit room temperature (300 K) ferromagnetic and anisotropic ferromagnetic behavior which may be a consequence of the easy magnetization direction along the wire axes and magnetostatic interaction.  相似文献   

8.
The directed assembly of nanoparticles and nanoscale materials onto specific locations of a surface is one of the major challenges in nanotechnology. Here we present a simple and scalable method and model for the assembly of nanoparticles in between electrical leads. Gold nanoparticles, 20 nm in diameter, were assembled inside electrical gaps ranging from 15 to 150 nm with the use of positive ac dielectrophoresis. In this method, an alternating current is used to create a gradient of electrical field that attracts particles in between the two leads used to create the potential. Assembly is achieved when dielectrophoretic forces exceed thermal and electrostatic forces; the use of anchoring molecules, present in the gap, improves the final assembly stability. We demonstrate with both experiment and theory that nanoparticle assembly inside the gap is controlled by the applied voltage and the gap size. Experimental evidence and modeling suggest that a gap-size-dependent threshold voltage must be overcome before particle assembly is realized. Assembly results as a function of frequency and time are also presented. Assembly of fewer than 10 isolated particles in a gap is demonstrated. Preliminary electrical characterization reveals that stable conductance of the assembled particles can be achieved.  相似文献   

9.
The separation, reusability and high catalytic activity of bioconjugate remain challenging task in proteins bound gold nanoparticles. A facile synthetic route for the fabrication of gold nanoparticle assembled polyurethane microsphere template and immobilization of trypsin on gold/polyurethane surface to form trypsin-nanogold-polyurethane bioconjugate was developed. The bioconjugate was characterized by X-ray diffraction, Field emission scanning electron microscopy, Transmission electron microscopy, UV-visible, Fourier transform infrared, Fluorescence and Circular dichroism spectroscopy. The catalytic studies confirmed retention of approximately 40% of its original activity even after eight consecutive reaction cycles. The bioconjugate is also very effective for its separation from the reaction medium and exhibited significant enhanced stability over a wide range of pH and temperature compared to free trypsin. These findings clearly demonstrate that trypsin immobilized gold nanoparticle assembled polyurethane microsphere acts as an excellent recyclable biocatalyst with enzyme-specific biocompatibility.  相似文献   

10.
Amperometric detection of H2O2 was studied at random arrays of 2.5 nm polyacrylate-capped Pt nanoparticles (NP) assembled in poly(diallydimethylammonium chloride), PDDA, as a function of NP surface coverage. The arrays were assembled by varying the adsorption time of PDDA-modified electrodes in the nanoparticles solution. Pt NP-on-PDDA assemblies exhibited significant sensitivity and stability facing constant anodic polarization and a low limit of detection at small Pt mass in submonolayer coverage. The current output was measured at approximately 0.5 A M(-1) cm(-2)(geom) over a linear range from 42 nM to 0.16 mM H2O2 at a loading of 0.87 microg(Pt)/cm(2) or an estimated coverage of 0.4 of an assumed monolayer, or higher, and decreased with decreasing NP surface density to 0.2 A M(-1) cm(-2)(geom) at a Pt loading of 190 ng/cm. On the other hand, the intrinsic sensitivity measured relative to the real Pt surface area increased with decreasing coverage and reached a significant limiting value of 0.9 A M(-1) cm(-2) real at approximately 190-380 ng/cm(2). The behavior shows a significant effective turnover rate per Pt site and mass (1 A M(-1)/microg of Pt) in loosely packed assemblies, while overlap of individual diffusion fields (of particles or islands) and inaccessibility of some active sites lowers the sensitivity per nanoparticle in densely packed arrays. The reported trend agrees with the behavior of ultramicroelectrode arrays.  相似文献   

11.
The negative differential resistance (NDR) effect observed in conducting polymer/Au nanoparticle composite devices is not yet fully clarified due to the random and disordered incorporation of Au nanoparticles into conducting polymers. It remains a formidable challenge to achieve the sequential arrangement of various components in an optimal manner during the fabrication of Au nanoparticle/conducting polymer composite devices. Here, a novel strategy for fabricating Au nanoparticle/conducting polymer composite devices based on self‐assembled Au@PPy core–shell nanoparticle arrays is demonstrated. The interval between the two Au nanoparticles can be precisely programmed by modulating the thickness of the shell and the size of the core. Programmable NDR is achieved by regulating the spacer between two Au nanoparticles. In addition, the Au/conducting polymer composite device exhibits a reproducible memory effect with read–write–erase characteristics. The sequentially controllable assembly of Au@PPy core–shell nanoparticle arrays between two microelectrodes will simplify nanodevice fabrication and will provide a profound impact on the development of new approaches for Au/conducting polymer composite devices.  相似文献   

12.
It is shown that the one-dimensional studies of the wall surrounding a bubble domain do not violate some necessary self-consistency requirements. Moreover, it is shown that the ratio of the magnetostatic self energy (which is neglected in these studies) to the total one-dimensional wall energy isT/Q, whereTis of the order of 1 for typical film thickness of a typical bubble material. This justifies the use of the one-dimensional wall for these materials, as long as the quality factorQ = K/(2piMmin{s}max{2})is large.  相似文献   

13.
Water-processable organic semiconductor nanoparticles (NPs) are considered promising materials for the next-generation of optoelectronic applications due to their controlled size, internal structure, and environmentally friendly processing. Reasonably, the controllable assembly of donor:acceptor (D:A) NPs on large areas, quality, and packing density of deposited films, as well as layer morphology, will influence the effectiveness of charge transfer at an interface and the final performance of designed optoelectronic devices.This work represents an easy and effective approach for designing self-assembled monolayers of D:A NPs. In this self-assembly procedure, the NP arrays are prepared on a large scale (2 × 2 cm2) at the air/water interface with controlled packing density and morphology. Due to the unique structure of individual D:A Janus particles and their assembled arrays, the Janus nanoparticle (JNP)-based device exhibits an 80% improvement of electron mobility and more balanced charge extraction compared to the conventional core–shell NP-based device. An outstanding performance of polymer solar cells with over 5% efficiency is achieved after post-annealing treatment of assembled arrays, representing one of the best results for NP-based organic photovoltaics. Ultimately, this work provides a new protocol for processing water-processable organic semiconductor colloids and future optoelectronic fabrication.  相似文献   

14.
A convective assembly technique at the micron scale analogous to the writing action of a “pipette pen” has been developed for the linear assembly of gold nanoparticle strips with micron scale width and millimeter scale length for surface enhanced Raman scattering (SERS). The arrays with interparticle gaps smaller than 3 nm are hexagonally stacked in the vicinity of the pipette tip. Variable numbers of stacked layers and clean surfaces of the assembled nanoparticles are obtained by optimizing the velocity of the pipette tip. The SERS properties of the assembled nanoparticle arrays rely on their stacking number and surface cleanliness.   相似文献   

15.
High density aligned ZnO nanotube (NT) arrays were synthesized using a facile chemical etching of electrochemically deposited ZnO nanorods (NRs). The influence of etching time and solution concentration on the ZnO NT formation was investigated. Moreover, cadmium selenide (CdSe) nanoparticles as sensitizers were assembled onto the ZnO NT and NR arrays for solar cell application. A conversion efficiency (η) of 0.44% was achieved for CdSe/ZnO NT-based solar cell under the white light illumination intensity of 85 mW/cm2. An 8% enhancement in η was observed between the CdSe/ZnO NT-based and NR-based solar cell due to the enhancement of the photocurrent density. ZnO NT arrays have been proved to have a superior ability as compared with ZnO NR arrays when employed as a semiconductor film.  相似文献   

16.
Lee TH  Sue HJ  Cheng X 《Nanotechnology》2011,22(28):285401
Hybrid solar cells based on poly(3-hexylthiophene) (P3HT) and ZnO nanoparticle bulk heterojunctions (BHJ) combined with ZnO nanorod arrays were fabricated and analyzed. The dispersion of ZnO nanoparticles in P3HT is assisted by dye molecules, which function as a surface modifier for ZnO nanoparticles to improve compatibility between ZnO nanoparticles and P3HT. Compared to the ZnO nanorod/P3HT devices, the optimized cells with the ZnO nanoparticles dispersed in P3HT can significantly increase the short-circuit current and the overall power conversion efficiency from 1.36 mA cm(-2) to 2.51 mA cm(-2) and from 0.18% to 0.45% with 625 nm long ZnO nanorod arrays, respectively. The novel scheme of using the light-absorbing dye molecules both as light absorber and as surfactant for ZnO nanoparticles presents a facile route towards forming bulk heterojunction hybrid solar cells based on semiconducting nanomaterials and conjugated polymers.  相似文献   

17.
Periodic hexagonal spherical nanoparticle arrays are fabricated by a sacrificial colloidal monolayer template route by chemical deposition and further physical deposition. The regular network‐structured arrays are first templated by colloidal monolayers and then they are changed to novel periodic spherical nanoparticle arrays by further sputtering deposition due to multiple direction deposition and shadow effect between adjacent nanoparticles. The nanogaps between two adjacent spherical nanoparticles can be well tuned by controlling deposition time. Such periodic nanoparticle arrays with gold coatings demonstrate a very stable and high sensitive surface‐enhanced Raman scattering spectroscopy (SERS) performance. The periodic nanoparticle arrays with 10 nm gaps display much stronger SERS enhancement due to electromagnetic coupling. The chemically modified nanoparticle arrays show good hydrophobicity, which shorten process of detecting probe molecules using them as SERS‐active substrates by localized concentration of droplet evaporation and a low detection limit of 10−12 m R6G can be achieved without solution wasting in a short time. The hydrophobic substrate offers a simple, convenient, and economical method to examine SERS performance by rapid concentration of solution on it and it is highly helpful to improve its practical applications in portable Raman detecting devices to detect organic molecules.  相似文献   

18.
An experiment was performed whereby domain walls were forced to bulge under the influence of an applied easy-axis fieldH. The region where the domain wall is bent appears to be approximately circular. To relate the radius of such a curved domain wall to theory, a model was chosen that takes into account magnetostatic, anisotropy, and exchange energy. The assumption was made that anisotropy and exchange energy, as well as the magnetostatic contribution due to the local magnetization distribution of a domain wall, may be summarized in a wall energy term. The energy of the entire system has been calculated under the constraint that the domain wall should be circular and that it is inscribed tangentially into a triangle. Minimizing the total energy with respect to the radius of curvatureA, the result can be expressed approximately byA propto (H - H_{c})^{-1}where Hcis the coercive force. This result fits the model of a membrane under pressure.  相似文献   

19.
We report microwave assisted hydrothermal synthesis and magnetocaloric properties of La0.67Sr0.33MnO3 manganite. The synthesized La0.67Sr0.33MnO3 nanoparticles was characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS) and magnetization measurements. The XRD results indicated that La0.67Sr0.33MnO3 nanoparticles have polycrystalline nature with monoclinic structure. FE-SEM results suggested that La0.67Sr0.33MnO3 nanoparticles are assembled into rod like morphology. Magnetization measurements show that La0.67Sr0.33MnO3 nanoparticles exhibit transition temperature (Tc) above room temperature. The maximum magnetic entropy change (deltaS(M))max was found to be 0.52 J/kg K near Tc approximately 325 K at applied magnetc field of 20 kOe. This compound may considered as potential material for magnetic refrigeration near room temperature.  相似文献   

20.
李玄  赵科  刘金铃 《复合材料学报》2023,40(2):1118-1128
为提高铝基材料的高温力学性能以满足其在573 K以上用于航空航天装备结构件的性能需求,采用高能球磨结合真空热压烧结工艺制备了体积分数高达20vol%的纳米Al2O3颗粒(146 nm)增强铝基复合材料,对其微观结构和高温压缩性能进行了研究。结果表明:纳米Al2O3颗粒均匀分散于超细晶铝基体中,且复合材料完全致密;该复合材料具有优异的高温压缩性能:应变速率为0.001/s时,473 K时压缩强度高达380 MPa,即使673 K时依然高达250 MPa,比其他传统铝基材料提高至少1倍;通过对其流变应力进行基于热激活的本构模型拟合可以发现,该复合材料具有高的应力指数(30)和表观激活能(204.02 kJ/mol)。这是由于高体积分数纳米颗粒能够有效钉扎晶界,并与铝基体形成热稳定的界面结合,显著提高复合材料的组织热稳定性,而且在变形过程中与晶界有效阻碍位错运动,显著提高复合材料的热变形门槛应力(在473~673 K时为190.6~328.4 MPa),其热变形过程可以由亚结构不变模型进行解释。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号