首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The effective valence of cerium is studied by L 3-XANES spectroscopy using synchrotron radiation in the following valence-unstable systems with different types of magnetic ordering: a CeNi matrix doped with neodymium, praseodymium, and gadolinium ions in the temperature range 5–300 K and the Ce2Fe17 − x Mn x intermetallic compound. The obtained dependences are discussed in terms of generally accepted models of states with an intermediate valence of rare-earth ions. Possible correlations between the effective valence of cerium and the magnetic properties of the substances are taken into account.  相似文献   

2.
The stability of the reactive interface during the solid-state displacement reaction, Cu2O+Co1−X Fe X =2Cu+(Co1−X Fe X )O, is studied as a function of Co-Fe alloy composition at 1223 K. For X≤0.03, the reaction zone has a layered structure, and the cation diffusion in (Co, Fe)O is the rate-limiting step. The interface is unstable in the early stages of the reaction; the instability decreases with time as the oxide thickness increases, and the interface becomes planar at long times. The time required for the attainment of interface planarity increases with the value of X. The reaction kinetics are consistent with the available cation-diffusion data in (Co, Fe)O. For X≥0.045, the product zone is a composite of Cu+(Co, Fe)O, and the rate is limited by the oxygen transport in copper. The transition to interface instability occurs when the oxide can support a cation flux that exceeds the maximum possible oxygen flux in copper. During the reaction, composition gradients develop in (Co, Fe)O because of higher diffusion rates for iron than for cobalt.  相似文献   

3.
The stability of a lamellar structure consisting of α 2 and γ phases in alloys Ti-48Al, Ti-48Al-2Mo, Ti-48Al-4Nb, and Ti-48Al-1Mo-4Nb has been studied as a function of aging time and temperature. The alloys were solution treated (1400 °C, 30 min, and air-cooled (AC)) and aged at 1000 °C and 1100 °C for 1, 4, and 16 hours, respectively. The results indicate that the kinetics of lamellae to equiaxed transformation depends on alloy chemistry, aging time, and temperature. The Nb decreases and Mo increases the kinetics of transformation. The combined effect of Nb and Mo results in the highest volume fraction of equiaxed microstructure at a given aging time and temperature. The results have been discussed in relation to microstructural features and have been compared with those reported in other α 2+γ alloys.  相似文献   

4.
In the literature, no direct derivation exists of the quadratic activity coefficient vs composition relationships for a quaternary system with high solute concentrations. Such relations for a ternary system (1-2-3) were derived by Darken by extending the results of a binary system (1-2), introducing a new concept of “hypothetical system” (2-3). To present a better scheme to find the activity coefficient-composition relations for multicomponent systems, derivations are made for a quaternary system A-B-C-D in the current work. Using a MacLaurin series expansion, the (Raoultian) activity coefficient, ln γ i , of each component is equated with a quadratic expression of mole fractions (x), involving the activity coefficient at zero concentration ( gi0 ) \left( {\gamma_{i}^{0} } \right) and nine interaction coefficients (ε). Subsequently, with the help of a Gibbs–Duhem equation, followed by a comparison of coefficients, most preceding 9 × 4, i.e., 36 interaction coefficients are eliminated, leaving behind only three self- and three ternary interaction coefficients, which are enough to express the activity coefficient vs composition relationships for the solutes B, C, and D, as well as for the solvent A. Setting the mole fraction x D  = 0, the preceding expressions establish the same relations as proposed by Darken for the ternary system A-B-C. The derivation also clarifies how the quadratic concentration terms accompany the first-order interaction coefficients, not the second-order ones. Applications of the derived relations to determine simultaneously the activity coefficients gi0 \gamma_{i}^{0} and the interaction coefficients ε in a new way in some iron- and steelmaking systems are presented. A new data on interaction coefficients in liquid iron at 1873 K (1600 °C), e\textV\textV = - 6. 1, \varepsilon_{\text{V}}^{\text{V}} = - 6. 1, has been generated through such an application.  相似文献   

5.
Alloys of Co78-x Pt x B10Si12 were produced using the melt-spin process in order to study the crystallization behavior and ensuing magnetic properties of the Co-Pt amorphous alloys as a function of the Pt content. We showed that when x>15, well below its stoichiometric composition, CoPt intermetallic compound crystallized in the amorphous alloy. Below this composition, the main crystallization product was Co with Pt dissolved in its lattice. The nucleation of CoPt greatly altered the crystallized microstructures and magnetic properties of the Co-Pt amorphous alloys during annealing. In spite of the nucleation of CoPt with its high magnetic anisotropy, the highest coercivity was obtained when x was 15, free of the CoPt grains. It was also concluded that the Pt addition, in general, triggered crystallization to occur at a progressively lower temperature.  相似文献   

6.
The α-rhombohedral and β-rhombohedral crystal structures of pure elemental boron powders have been synthesized via gas phase thermal dissociation of BCl3 by H2 on a quartz substrate. The parameters affecting the crystal structures of the final products and the process efficiency, such as BCl3/H2 molar ratio (1/2 and 1/4) and reaction temperature (1173 K to 1373 K [900 °C to 1100 °C]), have been examined. The experimental apparatus of original design has enabled boron powders to be obtained at temperatures lower than those in the literature. The surface/powder separation problem encountered previously with different substrate materials has been avoided. Boron powders have been synthesized with a minimum purity of 99.99 pct after repeated HF leaching. The qualitative analysis of exhaust gases has been conducted using a Fourier transform infrared spectroscope (FTIR). The synthesized powders have been characterized using an X-ray powder diffractometer (XRD) and scanning electron microscope (SEM) techniques. The results of the reactions have been compared with equilibrium predictions performed using the FactSage 6.2 (Center for Research in Computational Thermochemistry, Montreal, Canada) thermochemical software.  相似文献   

7.
The mechanical performance of A357 cast ingot aluminum alloy specimens subjected to 25 different artificial aging heat treatments has been experimentally investigated. For the quality evaluation of the artificially aged alloys, the quality index Q D , proposed by the authors, has been involved. The index Q D interprets quality as the potential of an alloy to offer combinations of tensile strength, ductility, and toughness at certain levels of values. The evaluation of the alloy quality using Q D relies on the availability of the materials tensile flow curve. To facilitate the exploitation of Q D for quality assessment, approximations of Q D are developed. In the proposed approximations, Q D is formulated as a function of ultimate tensile strength, yield strength, and elongation to fracture, or alternatively, as a function of Rockwell hardness E and Charpy impact energy values. Accurate estimations of the quality index Q D are compared against Q D values obtained by using the proposed approximations.  相似文献   

8.
Magnesium alloy-based hybrid composites with carbon-fiber, SiC p , and in-situ Mg2Si reinforcements have been prepared by the squeeze-infiltration technique. The results of the studies done on the measurement of the coefficient of thermal expansion after thermal cycling of these composites show that the thermal cycling initially leads to rapid linear expansion of the composite. However, the expansion becomes stabilized after a few cycles, pointing toward formation of the stable interfaces due to the formation of stable precipitates. The model for the growth kinetics of these precipitates at the interface shows a rapid initial growth of the precipitates with the number of thermal cycles, which becomes staturated after a few thermal cycles. The thermal treatment of the composite lowers the coefficient of linear thermal expansion, which can be explained on the basis of further stabilization of the interfaces after the thermal treatment.  相似文献   

9.
The effect of platinum addition on the interdiffusion behavior of γ-Ni + γ′-Ni3Al alloys was studied by using diffusion couples comprised of a Ni-Al-Pt alloy mated to a Ni-Al, Ni-Al-Cr, or Ni-based commercial alloy. The commercial alloys studied were CMSX-4 and CMSX-10. Diffusion annealing was at 1150 °C for up to 100 hours. An Al-enriched γ′-layer often formed in the interdiffusion zone of a given couple during diffusion annealing due to the uphill diffusion of Al. This uphill diffusion was ascribed to Pt addition decreasing the chemical activity of aluminum in the γ + γ′ alloys. For a given diffusion couple end member, the thickening kinetics of the γ′ layer that formed increased with increasing Pt content in the Ni-Al-Pt γ + γ′ alloy. The γ′-layer thickening kinetics in diffusion couples with Cr showed less of a dependence on Pt concentration. Inference of a negative effect of Pt and positive effect of Cr on the Al diffusion in this system enabled explanation of the observed interdiffusion behaviors. There was no or minimal formation of detrimental topologically close-packed (TCP) phases in the interdiffusion zone of the couples with CMSX-4 or CMSX-10. An overlay Pt-modified γ + γ′ coating on CMSX-4 showed excellent oxidation resistance when exposed to air for 1000 hours at 1150 °C. Moreover, the Al content in the coating was maintained at a relatively high level due to Al replenishment from the CMSX-4 substrate.  相似文献   

10.
The ultrasound velocity in GdCl3 + MCl (M = Na, Cs) chloride melts is measured over wide temperature and composition ranges, and their adiabatic compressibility is calculated. A correlation is established between the relative deviations of these properties from their values in hypothetic ideal salt mixtures and the reciprocal alkali-metal cation radii. The role of lanthanide compression in the propagation of sound vibrations in the chlorides of cerium group REMs is revealed.  相似文献   

11.
The mixing states of room-temperature ionic liquid (RTIL) H2O mixtures (x = 0.0 mol pct to 99.5 mol pct H2O) were investigated using wide-angle X-ray scattering (WAXS), small-angle X-ray scattering (SAXS), and optical absorption in an ultraviolet and visible (UV-vis) region. The RTIL is N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate, [DEME][BF4]. In a “prepeak” region of the WAXS, the scattered intensities increased at 85 mol pct to 95 mol pct. A medium-range order (MRO) in the liquid structure as observed in network-forming materials developed markedly. In the SAXS experiments, we can detect nanoscale fluctuations relating to polar and nonpolar regions. At 65 mol pct to 85 mol pct, the SAXS intensity increased unexpectedly. Furthermore, entirely different optical absorption spectra in the UV-vis region were observed as a macroscopic property from 90 mol pct to 95 mol pct. We suppose that these anomalies relate to the MRO of the liquid structure. All anomalies probably are induced by an intrinsic property in [DEME][BF4]-H2O mixtures.  相似文献   

12.
The thermal conductivities of individual NdCl3, the K3NdCl6 chemical compound, an equimolar 0.5NdCl3-0.5NaCl mixture, and eutectic 0.5NdCl3-0.5KCl and 0.45NdCl3-0.55CsCl mixtures are measured. For all melts, the concentration and temperature dependences of the thermal conductivity are found.  相似文献   

13.
The ultrasound velocity in binary LaCl3 + MCl (M = Li, Na, K, Rb, and Cs) melts is measured, and their adiabatic compressibility is calculated as a function of temperature and composition. A relation is established between the relative deviations of these properties from their values for hypothetic ideal salt mixtures, on the one hand, and the ionic potentials of the alkali-metal cations, on the other.  相似文献   

14.
This article presents in-situ observation of ferrite (α)/austenite (γ) phase transformation in an Fe-8.5 at. pct Ni alloy deformed by rolling using an automated scanning electron microscopy/energy backscattered diffraction (SEM/EBSD) system. During heating, recrystallization in α phase and α → γ phase transformation independently occurred. The γ grains nucleated in unrecrystallized α grains were most probably incorporated into the grain interior of recrystallized α grains. They did not have any specific orientation relation (OR) with recrystallized α grains and grew in an isotropic manner. On the other hand, the intragranular γ grains nucleated in recrystallized α grains had a Kurdjumov–Sachs (K-S) OR with the α grains and grew in a considerably anisotropic manner. They preferentially grew along the common direction of surface traces of {110} α /{111} γ . Approximately half of grain boundary (GB) allotriomorphs had either the K-S OR or the Nishiyama–Wasserman (N-W) OR with the parent α grains. The γ allotriomorphs predominantly grew into the α grain having the special OR with themselves. The GB character distribution of γ phase at high temperatures was measured. The fraction of CSL boundaries was as high as 63 pct, particularly that of Σ3 grain boundaries (GBs) was 54 pct.  相似文献   

15.
From the viewpoint of thermodynamics, using the Wilson equation and an extended Miedema model, the effect of the alloying element on the stability of the precipitated phases during the fabrication of in-situ reinforced TiB2/Al composites was evaluated. The result shows that additions of alloying elements, such as Mg, Cu, Zr, Ni, Fe, V, and La, can promote the formation of Al3Ti and TiB2 phases. Particularly, Zr has the most pronounced effect among these alloying elements. In addition, alloying elements can hinder the formation of AlB2 to a small extent. The calculation results also show that it is easier for magnesium to react with the salts to form TiB2 than aluminum during the fabrication of in-situ reinforced TiB2/Al using the flux-assisted synthesis (FAS) technology.  相似文献   

16.
In this work, a reactive synthesis process is proposed to obtain ZrAl3-Al2O3 particulate-reinforced aluminum matrix composites. The process involves the in-situ formation of Al2O3 and ZrAl3 from Al-ZrO2 green compacts. Upon compact heating, it is found that reduction of ZrO2 by molten aluminum occurs at temperatures above 750 °C, leading to the development of ZrAl3 and Al2O3 phases. Thermodynamically, it is found that the reduction of zirconium oxide is driven mainly by the dissolution of Zr in molten aluminum. Because the solubility of Zr in liquid aluminum is extremely small, the formation of ZrAl3 is favored after relatively small Zr dissolutions. The first Zr-Al intermetallics to form at the lowest temperatures seem to be metastable, as infered from the measured atom ratios for Al : Zr of 2.83 : 1. At increasing temperatures, the reaction comes into completion, resulting in the formation of equilibrium intermetallic ZrAl3 phases. The results obtained from differential scanning calorimetry (DSC) indicate that by increasing the scanning rates, both the reaction temperature and the exothermic peak intensity also increase. Alternatively, it is found that by reducing the amount of ZrO2 in the green compact, the in-situ reaction temperatures also shift toward higher values.  相似文献   

17.
Defect structures in crystallites of the stable phases in thin films of transition-metal (TM) disilicides (C11 b MoSi2, C40 TaSi2, and C54 TiSi2) produced by cosputtering and subsequent annealing have been investigated by transmission electron microscopy (TEM). Crystallites in thin films of MoSi2, TaSi2, and TiSi2 all contain planar faults parallel to hexagonally arranged TMSi2 planes, which are a characteristic feature commonly observed in all three crystal structures. These planar faults are twin boundaries in all cases. Twins in thin films of these disilicides, thus, have a common characteristic that the twin habit plane is parallel to hexagonally arranged TMSi2 stoichiometric planes. For twins in thin films of C11 b MoSi2, and C54 TiSi2, the twining elements can be deduced and the twin habit plane is found not to be parallel to the twinning (K 1) plane, but to be perpendicular to it. Twins formed in C40 TaSi2 thin films are different from those formed in C11 b MoSi2 and C54 TiSi2 thin films, in that the crystal orientation of the twin is exactly the same as that of the matrix, since they are racemic twins that are only enantiomorphically (space groups of P6222 or P6422) related to each other. This article is based on a presentation in the symposium “Terence E. Mitchell Symposium on the Magic of Materials: Structures and Properties” from the TMS Annual Meeting in San Diego, CA in March 2003.  相似文献   

18.
A series of in-situ, deformation-processed metal matrix composites were produced by direct powder extrusion of blended constituents. The resulting composites are comprised of a metallic Ti-6Al-4V matrix containing dispersed and co-deformed discontinuously reinforced-intermetallic matrix composite (DR-IMC) reinforcements. The DR-IMCs are comprised of discontinuous TiB2 particulate within a titanium trialuminide or near-γ Ti-47Al matrix. Thus, an example of a resulting composite would be Ti-6Al-4V+40 vol pct (Al3Ti+30 vol pct TiB2) or Ti-6Al-4V+40 vol pct (Ti-47Al+40 vol pct TiB2), with the DR-IMCs having an aligned, high aspect ratio morphology as a consequence of deformation processing. The degree to which both constituents deform during extrusion has been examined using systematic variations in the percentage of TiB2 within the DR-IMC, and by varying the percentage of DR-IMC within the metal matrix. In the former instance, variation of the TiB2 percentage effects variations in relative flow behavior; while in the latter, varying the percentage of DR-IMC within the metallic matrix effects changes in strain distribution among components. The results indicate that successful co-deformation processing can occur within certain ranges of relative flow stress; however, the extent of commensurate flow will be limited by the constituents’ inherent capacity to plastically deform.  相似文献   

19.
In-situ Al2O3/TiAl3 intermetallic matrix composites were fabricated via squeeze casting of TiO2/A356 composites heated in the temperature range from 700 °C to 780 °C for 2 hours. The phase transformation in TiO2/A356 composites employing various heat-treatment temperatures (700 °C to 780 °C) was studied by means of differential thermal analysis (DTA), microhardness, scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and X-ray diffraction (XRD). From DTA, two exothermic peaks from 600 °C to 750 °C were found in the TiO2/A356 composites. The XRD showed that Al2O3 and TiAl3 were the primary products after heat treatment of the TiO2/A356 composite. The fabrication of in-situ Al2O3/TiAl3 composites required 33 vol pct TiO2 in Al and heat treatment in the range from 750 °C to 780 °C. The hardness (HV) of the in-situ Al2O3/TiAl3 composites (1000 HV) was superior to that of nonreacted TiO2/A356 composites (200 HV). However, the bending strength decreased from 685 MPa for TiO2/A356 composites to 250 MPa for Al2O3/TiAl3 composites. It decreased rapidly because pores occurred during the formation of Al2O3 and TiAl3. The activation energy of the formation of Al2O3 and TiAl3 from TiO2 and A356 was determined to be about 286 kJ/mole.  相似文献   

20.
The effect of Ni content on microstructure, hardness, and wear resistance was studied for the Cr13Ni5Si2-base intermetallic alloys toughened by Ni-base solid solution (γ). Volume fraction and microhardness of the Cr13Ni5Si2 primary dendrite as well as the average hardness of the Cr13Ni5Si2/γ alloy decrease with the increasing Ni content. The Cr13Ni5Si2/γ alloys have excellent wear resistance under dry sliding wear test conditions, which increases under high contact load wear conditions and decreases under low contact load wear test conditions with the increasing Ni content. The high wear resistance is due to the combination of high toughness of γ and high hardness of Cr13Ni5Si2 and formation of a transferred cover layer on the worn surface during wear process. The wear rate of the Cr13Ni5Si2/γ alloy is governed by the slow process of microspalling or pullout of the cracked Cr13Ni5Si2 primary dendrites. The Cr13Ni5Si2/γ alloys have extremely low load sensitivity of wear and the load-sensitivity coefficient of wear decreases drastically as the Ni content increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号