首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The surface modifier 3‐((4‐hydroxybutoxy)dimethylsilyl)propyl methacrylate (CD), which contains a double bond and a hydroxyl group, was synthesized through a coupling reaction of 1,4‐butanediol and (3‐methacryloxypropyl)dimethylchlorosilane. Subsequently, graphene oxide (GO) was functionalized with different amounts of CD from its edge carboxyl groups. Then, grafting through atom transfer radical polymerization of styrene in the presence of various amounts of the edge‐functionalized GO was carried out to evaluate the effect of graphene loading along with graft density. A peak at 3.8 ppm in the 1H NMR spectrum of CD associated with the methylene adjacent to the Si–O group indicated a successful coupling reaction. Attachment of CD on the edges of GO was evaluated using X‐ray photoelectron and Fourier transform infrared spectroscopies. Expansion of GO interlayer spacing by functionalization was evaluated using X‐ray diffraction. The ordered and disordered crystal structure of carbon was studied using Raman spectroscopy. The close ID/IG values for GO and various kinds of functionalized graphenes show the preserved graphitic crystallite size. Relaxation behaviour of polystyrene chains in the presence of graphene nanoplatelets and also the effect of graft content on chain confinement were studied using differential scanning calorimetry. High‐graft‐density nanocomposites show higher glass transition temperatures. Morphology of graphene nanoplatelets was studied using scanning electron and transmission electron microscopies. The flat and smooth morphology of graphene nanoplatelets is disturbed and also the transparency of the nanoplatelets decreases during the oxidation and functionalization processes. © 2014 Society of Chemical Industry  相似文献   

2.
A rapid and efficient post-polymerization functionalization of poly(urea-co-urethane) (PUU) onto the graphene oxide (GO) nanosheets has been developed to produce super-acidic polymer/GO hybrid nanosheets. Thus, the surface of GO nanosheets were functionalized with 3-(triethoxysilyl)propyl isocyanate (TESPIC) from hydroxyl groups to yield isocyanate functionalized graphene oxide nanosheets. Then, sulfonated polymer/GO hybrid nanosheets were prepared by condensation polymerization of isocyanate-terminated pre-polyurea onto isocyanate functionalized graphene oxide nanosheets through the formation of carbamate bonds. FTIR and TGA results indicated that TESPIC modifier agent and poly(urea-co-urethane) were successfully grafted onto the GO nanosheets. The grafting efficiency of poly(urea-co-urethane) polymer onto the GO nanosheets was estimated from TGA thermograms to be 205.9%. Also, sulfonated polymer/GO hybrid nanosheets showed a proton conductivity as high as 3.7 mS cm?1. Modification and morphology of GO nanosheets before and after modification processes were studied by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD).  相似文献   

3.
The effect of the parent graphite on the structure of graphene oxide (GO) is investigated using high purity graphites with a uniform crystallite size. Our results provide direct evidence of how the size of the graphite crystal affects the oxidation process and the functionality and sheet size of the resulting GO. The important role of the crystal boundaries in the graphite with smaller crystallites is confirmed by the smaller size of the GO sheets obtained and also by the presence of carboxylic groups, located at the edges of the sheets. However, functionalization in the graphite with larger crystals mainly occurs in the vicinity of basal plane defects, as evidenced by the larger number of epoxy groups. Thus, this study leads to a better understanding of the oxidation process of graphite and provides a way to produce GOs suitable for different applications.  相似文献   

4.
首先对石墨进行氧化处理制备氧化石墨(GO),然后对GO进行超声处理得到氧化石墨烯(GOs),并通过共混法制备了水性聚氨酯(WPU)/GOs复合材料。讨论了超声分散以及GOs加入量对WPU/GOs复合材料力学性能和热稳定性的影响。结果表明,经过超声分散的复合材料的力学性能比未超声分散的好;随着GOs含量的增加,复合材料的拉伸强度先增大后减小,断裂伸长率逐渐减小;加入质量分数0.50%的GOs,其WPU/GOs复合材料的热分解温度可提高44.7℃,明显提高WPU的热稳定性。  相似文献   

5.
Three surface modifiers, namely, aminopolyether (D2000), phenyl isocyanate, and poly(ethylene glycol) (PEG800), which have different affinities to the hard and soft segments in polyurea, were used to synthesize functionalized graphite oxides (GO). The PEG800‐modified (PEG800‐GO) and phenyl isocyanate‐modified (i‐GO) GOs were highly exfoliated and dispersed in DMF, whereas the D2000‐modified GO (D2000‐GO) produced some precipitates. Polyurea/GO composites were prepared using a solution‐blending method, in which functionalized GO platelet suspensions in dimethyl formamide were used. Results show that PEG800‐GO and i‐GO are uniformly dispersed throughout the polymer matrix on a nanoscale, whereas D2000‐GO forms visible aggregates. The well‐dispersed GO platelets improved the thermal stability and mechanical properties of polyurea. PEG800‐GO, which has a strong affinity for the soft segments, shows a more significant reinforcing effect. At 2.0 wt % GO loading, the tensile strength of polyurea was enhanced by ~75%. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39775.  相似文献   

6.
In an attempt to enhance the mechanical properties of epoxy/graphene‐based composites, the interface was engineered through the functionalization of graphene oxide (GO) sheets with p‐phenylenediamine; this resulted in p‐phenylenediamine functionalized graphene oxide (GO–pPDA). The morphology and chemical structure of the GO–pPDA sheets were studied by spectroscopic methods, thermal analysis, X‐ray diffraction, and transmission electron microscopy. The characterization results show the successful covalent functionalization of GO sheets through the formation of amide bonds. In addition, p‐phenylenediamine were polymerized on graphene sheets to form crystalline nanospheres; this resulted in a GO/poly(p‐phenylenediamine) hybrid. The mechanical properties of the epoxy/GO–pPDA composite were assessed. Although the Young's modulus showed improvement, more significant improvements were observed in the strength, fracture strain, and plane‐strain fracture toughness. These improvements were attributed to the unique microstructure and strong interface between GO–pPDA and the epoxy matrix. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43821.  相似文献   

7.
Since its recent successful isolation, graphene has attracted an enormous amount of scientific interest due to its exceptional physical properties. Graphene incorporation can improve electrical and mechanical properties of polymers including polyethylene (PE). However, the hydrophobic nature and low polarity of PE have made effective dispersion of nano-fillers difficult without compatibilization. Graphene was derived from graphite oxide (GO) via rapid thermal exfoliation and reduction. This thermally reduced graphene oxide (TRG) was blended via melt and solvent blending with linear low density PE (LLDPE) and its functionalized analogs (amine, nitrile and isocyanate) produced using a ring-opening metathesis polymerization (ROMP) strategy. TRG was well exfoliated in functionalized LLDPE while phase separated morphology was observed in the un-modified LLDPE. Transmission electron micrographs showed that solvent based blending more effectively dispersed these exfoliated carbon sheets than did melt compounding. Tensile modulus was higher for composites with functionalized polyethylenes when solvent blending was used. However, at less than 3 wt.% of TRG, electrical conductivity of the un-modified LLDPE was higher than that of the functionalized ones. This may be due to phase segregation between graphene and PE, and electrical percolation within the continuous filler-rich phase.  相似文献   

8.
A facile click chemistry approach to the functionalization of three‐dimensional hyperbranched polyurethane (HPU) to graphene oxide (GO) nanosheets is presented. HPU‐functionalized GO samples of various compositions were synthesized by reacting alkyne‐functionalized HPU with azide‐functionalized GO sheets. The morphological characterization of the HPU‐functionalized GO was performed using transmission electron microscopy and its chemical characterization was carried out using Fourier transform‐infrared spectroscopy, nuclear magnetic resonance spectroscopy, and X‐ray photoelectron spectroscopy. The graphene sheet surfaces were highly functionalized, leading to improved solubility in organic solvents, and consequently, enhanced mechanical, thermal, and thermoresponsive and photothermal shape memory properties. The strategy reported herein provides a very efficient method for regulating composite properties and producing high performance materials. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43358.  相似文献   

9.
Covalent functionalization of pentadecane-decorated thermally reduced graphite oxide (GO) sheets has been studied as a tool for the preparation of polyethylene/GO composites exhibiting rheological and electrical percolation thresholds. It was accomplished through pentadecane based radical addition onto unsaturated bonds located on the GO sheets' surface using dicumyl peroxide as hydrogen abstractor. This chemical functionalization influences the affinity of the formed pentadecane grafted GO sheets for various solvents. Then, the compounding of the composites pentadecane grafted GO/PE was performed at a processing temperature of 140 °C with 25, 20, 15, 10, 8 and 5 wt% loadings. Rheological and electrical percolation thresholds were found between 10 and 15 wt% for polyethylene/pentadecane functionalized graphene oxide composites while the composite graphite/PE at the same loading percentage did not reach any percolation threshold.  相似文献   

10.
In this study 2-amino-4,6-didodecylamino-1,3,5-triazine (ADDT) was synthesized from cyanuric chloride and covalently functionalized onto graphene oxide nanosheets. The chemical structure of the alkylated melamine and the functionalized graphene oxide (GO) nanosheets were characterized with 1H NMR, FT-IR, XPS, TGA and TEM. The results indicate that two chlorine atoms on the triazine ring of cyanuric chloride were substituted by two long alkyl chains. Covalent functionalization of ADDT onto the graphene oxide nanosheets was confirmed with both FT-IR and XPS results. The reduced mass loss rate along with enhanced residue formation (TGA results) indicates significant improvement in thermal stability for GO-ADDT compared to GO. Moreover good solubility of GO-ADDT in organic solvents suggests the potential of GO-ADDT as a nanoadditive for polymeric systems.  相似文献   

11.
A facile method for preparing functionalized graphene oxide single layers with nitroxide groups is reported herein. Highly oxidized graphite oxide (GO = 83.1%) was obtained, slightly modifying an improved Hummer’s method. Oxoammonium salts (OS) were investigated to introduce nitroxide groups to GO, resulting in a one-step functionalization and exfoliation. The mechanisms of functionalization/exfoliation are proposed, where the oxidation of aromatic alcohols to ketone groups, and the formation of alkoxyamine species are suggested. Two kinds of functionalized graphene oxide layers (GOFT1 and GOFT2) were obtained by controlling the amount of OS added. GOFT1 and GOFT2 exhibited a high interlayer spacing (d0001 = 1.12 nm), which was determined by X-ray diffraction. The presence of new chemical bonds C–N (∼9.5%) and O–O (∼4.3%) from nitroxide attached onto graphene layers were observed by X-ray photoelectron spectroscopy. Single-layers of GOFT1 were observed by HRTEM, exhibiting amorphous and crystalline zones at a 50:50 ratio; in contrast, layers of GOFT2 exhibited a fully amorphous surface. Fingerprint of GOFT1 single layers was obtained by electron diffraction at several tilts. Finally, the potential use of these materials within Nylon 6 matrices was investigated, where an unusual simultaneous increase in tensile stress, tensile strain and Young’s modulus was observed.  相似文献   

12.
To improve the physical and gas barrier properties of biodegradable poly(lactic acid) (PLA) film, two graphene nanosheets of highly functionalized graphene oxide (0.3 wt% to 0.7 wt%) and low-functionalized graphene oxide (0.5 wt%) were incorporated into PLA resin via solution blending method. Subsequently, we investigated the effects of material parameters such as loading level and degree of functionalization for the graphene nanosheets on the morphology and properties of the resultant nanocomposites. The highly functionalized graphene oxide (GO) caused more exfoliation and homogeneous dispersion in PLA matrix as well as more sustainable suspensions in THF, compared to low-functionalized graphene oxide (LFGO). When loaded with GO from 0.3 wt% to 0.7 wt%, the glass transition temperature, degree of crystallinity, tensile strength and modulus increased steadily. The GO gave rise to more pronounced effect in the thermal and mechanical reinforcement, relative to LFGO. In addition, the preparation of fairly transparent PLA-based nanocomposite film with noticeably improved barrier performance achieved only when incorporated with GO up to 0.7wt%. As a result, GO may be more compatible with hydrophilic PLA resin, compared to LFGO, resulting in more prominent enhancement of nanocomposites properties.  相似文献   

13.
We investigate the role of structure and chemical composition on the uptake of poly(ethylene oxide) by a series of graphite oxides (GOs) and thermally reduced GOs, leading to the formation of polymer-intercalated GO and polymer-adsorbed graphene nanostructures. To this end, a series of poly(ethylene oxide) (PEO) - GO hybrid materials exhibiting a variable degree of GO oxidation and exfoliation has been investigated in detail using a combination of techniques including X-ray photoelectron spectroscopy, X-ray diffraction, thermogravimetry, scanning-electron microscopy, and nitrogen adsorption. Intercalation of the polymer phase into well-defined GO galleries is found to correlate well with both the degree of GO oxidation and with the presence of hydroxyl groups. The latter feature is an essential prerequisite to optimize polymer uptake owing to the predominance of hydrogen-bonding interactions between intercalant and host. Unlike the bulk polymer, these intercalation compounds show neither crystallisation nor glass-transition associated with the polymer phase. Exfoliation and reduction of GO result in high-surface-area graphene layers exhibiting the highest polymer uptake in these GO-based materials. In this case, PEO undergoes surface adsorption, where we observe the recovery of glass and melting transitions associated with the polymer phase albeit at significantly lower temperatures than the bulk.  相似文献   

14.
Dodecyl amine (DA) functionalized graphene oxide(DA‐GO) and dodecyl amine functionalized reduced graphene oxide (DA‐RGO) were produced by using amidation reaction and chemical reduction, then two kinds of well dispersed DA‐GO/high‐density polyethylene (HDPE) and DA‐RGO/HDPE nanocomposites were prepared by solution mixing method and hot‐pressing process. Thermogravimetric, X‐ray photoelectron spectroscopy, Fourier transforms infrared spectroscopy, X‐ray diffractions, and Raman spectroscopy analyses showed that DA was successfully grafted onto the graphene oxide surface by uncleophilic substitution and the amidation reaction, which increased the intragallery spacing of graphite oxide, resulting in the uniform dispersion of DA‐GO and DA‐RGO in the nonpolar xylene solvent. Morphological analysis of nanocomposites showed that both DA‐GO and DA‐RGO were homogeneously dispersed in HDPE matrix and formed strong interfacial interaction. Although the crystallinity, dynamic mechanical, gas barrier, and thermal stability properties of HDPE were significantly improved by addition of small amount of DA‐GO or DA‐RGO, the performance comparison of DA‐GO/HDPE and DA‐RGO/HDPE nanocomposites indicated that the reduction of DA‐GO was not necessary because the interfacial adhesion and aspect ratio of graphene sheets had hardly changed after reduction, which resulting in almost the same properties between DA‐GO/HDPE and DA‐RGO/HDPE nanocomposites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39803.  相似文献   

15.
Zhuyin Sui  Xuetong Zhang  Yu Lei  Yunjun Luo 《Carbon》2011,(13):4314-4321
We report an environmentally-friendly and easy to scale-up route to synthesize reduced graphite oxide (RGO) hydrogel by simple reduction of exfoliated graphite oxide (GO) with excess vitamin C (VC). Mono-layer graphene sheets self-assembling into a well-defined and interconnected 3D porous network through ππ interaction during gelation can be seen by scanning electron microscopy and atomic force microscopy images. The RGO hydrogels were further functionalized and the corresponding RGO/carbon nanotube or RGO/noble metal hybrid hydrogels were obtained after similar reduction or co-reduction when carbon nanotubes were added to and stabilized with GO sheets or when noble metal precursors were added and incorporated with GO sheets. Rheological performance and electrical conductivities of these RGO-based hydrogels were also investigated in this study. The residual VC retained in these hydrogels as a biofunctional component can be gradually released in a diffusion-controlled manner, which may endow these RGO-based hydrogels with a biofunctionality. Because encapsulated bioactive VC simultaneously occurs with the formation of these assemblies, the resulting RGO-based hydrogels may have great potential in use as transdermal systems for controlled delivery of VC, tissue engineering, biosensors, etc.  相似文献   

16.
A practical approach to bulk-scale graphene-based materials is critically important for their use in the industrial applications. Here, we describe a facile method to prepare graphite oxide (GO) using a Couette–Taylor flow reactor for the oxidation of bulk graphite flakes. We found that the turbulent Couette–Taylor flow in the reactor could be engineered to result in the efficient mixing and mass transfer of graphite and oxidizing agents (KMnO4 and H2SO4), thereby improving the efficiency of graphite into GO. As compared to the standard Hummers’ method, higher fraction of a single- and few-layer graphene oxide (G-O) can be yielded in a dramatically shortened reaction time, by optimizing the processing parameters, we have shown that ∼93% of G-O yield could be achieved within 60 min of reaction time. This method also allowed for the in-situ functionalization of G-O with metal oxide nanoparticles to give a nanoparticle-decorated G-O hybrid material. Our method for facile and large-scale production of graphite oxide may find utility in a range of applications including energy storage, composites and supporting frameworks of catalyst.  相似文献   

17.
Graphene oxide (GO) was prepared from the oxidation of graphite and then it was functionalized with (3‐aminopropyl)triethoxysilane (APTES) from hydroxyl groups by a coupling reaction. Subsequently, alpha‐bromoisobutyryl bromide (BiBB) was attached to the APTES groups to yield initiator anchored graphene nanolayers (GOHBr). Then, GOHBr was used in different amounts as the precursor for atom transfer radical polymerization of styrene to evaluate the effect of graphene loading along with the graft density on the properties of final product. Successful in‐plain attachment of APTES, BiBB, and polystyrene to GO was evaluated by Fourier transform infrared spectroscopy. Graphene interlayers expansion by oxidation and functionalization processes was evaluated using X‐ray diffraction. The ordered and disordered crystal structures of carbon were evaluated by Raman spectroscopy. Morphology of graphene nanolayers was studied by scanning electron microscopy and also transmission electron microscopy. POLYM. COMPOS., 35:386–395, 2014. © 2013 Society of Plastics Engineers  相似文献   

18.
Graphite exfoliation by shear‐induced dry and wet processes and especially mechanochemistry represent attractive routes to carbon nanofillers. Dry ball‐milling of graphite in a planetary mill under gas pressure is a scalable and environmentally benign one‐step process, which requires neither hazardous solvents nor tedious separate functionalization and purification steps. Gas type, pressure, and milling duration govern average particle size, shape, and functionalization. Ball‐milling under Ar yields hydroxylated spherical carbon particle agglomerates, whereas ball‐milling under CO2 affords functionalized nanoplatelets without encountering agglomeration problems and highly exothermic post‐milling reactions with air. The carboxylation of graphene nanoplatelets enhances their dispersibility in various media including polypropylene (PP) even in the absence of compatibilizers. Large amounts of carboxylated nanoplatelets are dispersed in PP without massive viscosity build‐up. Functionalized carbon nanoplatelet fillers enable tailoring of recyclable lightweight carbon/hydrocarbon composites exhibiting an improved balance of stiffness, strength, toughness, electrical, and thermal conductivity.  相似文献   

19.
A facile method to synthesize nanoscale graphene oxide (GO) with controllable interlayer spacing was carried out using two-step oxidation process and much less acid to improve the efficiency of the oxidation. The X-ray diffraction results demonstrated that GO had been successfully prepared from graphite because of disappearance of characteristic peaks of pristine graphite at about 2θ = 26.5° along with appearance of a sharp major peak of GO at about 2θ = 9.4°. The increased basal spacing d001 of as-prepared GO could reach as high as 9.39 Å, suggesting higher degree of oxidation than that prepared by the classical Hummers' synthesis, and characterization results from Fourier transform infrared spectrometer, X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy further confirmed this conclusion. The influence of GO on anti-corrosion performance of nanocomposite coatings composited with the 2,5-dimethoxyaniline (DMA) conductive polymer was examined via potentiodynamic polarization curve tests in 3.5 wt% NaCl aqueous solution. The results demonstrated that the incorporation of GO significantly decreased the corrosion current density (icorr = 2.62 μA/cm2) in the case of GO-PDMA coating, reflecting excellent physical isolation of GO and its synergistic effect with PDMA against the infiltration of water and corrosive electrolyte.  相似文献   

20.
The simultaneous reduction and functionalization of graphene oxide (GO) was realized through a chemical grafting reaction with a functionalization agent N,N-bis(3-aminopropyl)methylamine (APMEL). The reduced and functionalized reduced GO (rGO-APMEL) sheets can be well dispersed in water without any added surfactant and the formed stable rGO aqueous dispersion can be kept for a long time, which can be used for the preparation of rubber–graphene (GE) composites by latex mixing. The electrostatic interaction between rGO–APMEL (positively charged) and natural rubber latex particles (negatively charged) leads to the formation of NR/rGO–APMEL composites with strong interaction. Compared with blank NR, the tensile strength and modulus for NR/rGO–APMEL increase with the rGO–APMEL loading. Especially, when the filler content is 5 phr, the tensile strength of NR/rGO–APMEL-5 increases by 32.7%, as a control the tensile strength of NR/GO-5 and NR/rGO-5 decrease by 20.1 and 15.6%, respectively. The entanglement-bound rubber tube model was used to analyze the reinforcing effect of GE on NR/rGO–APMEL nanocomposites at a molecular level. This study may provide us a novel approach to prepare well dispersed and exfoliated rGO–polymer nanocomposites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47375.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号