首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Recombinant human growth hormone (GH) improves in vivo cardiac function in rats with postinfarction heart failure (MI). We examined the effects of growth hormone (14 days of 3.5 mg. kg-1. d-1 begun 4 weeks after MI) on contractile reserve in left ventricular myocytes from rats with chronic postinfarction heart failure. METHODS AND RESULTS: Cell shortening and [Ca2+]i were measured with the indicator fluo 3 in myocytes from MI, MI+GH, control, and normal animals treated with GH (C+GH) under stimulation at 0.5 Hz at 37 degrees C. Cell length was similar in MI and MI+GH rats (150+/-5 and 157+/-5 microm) and was greater in these groups than in the control and C+GH groups (140+/-4 and 139+/-4 microm, P<0.05). At baseline perfusate calcium of 1.2 mmol/L, myocyte fractional shortening and [Ca2+]i transients were similar among the 4 groups. We then assessed contractile reserve by measuring the increase in myocyte fractional shortening in the presence of high-perfusate calcium of 3.5 mmol/L. In the control and C+GH groups, myocyte fractional shortening and peak systolic [Ca2+]i were similarly increased in the presence of high-perfusate calcium. In the presence of high-perfusate calcium, both myocyte fractional shortening and peak systolic [Ca2+]i were depressed in the MI compared with the control groups. In contrast, myocyte fractional shortening (14.1+/-.9% versus 11.1+/-.9%, P<0.05) and peak systolic [Ca2+]i (647+/-43 versus 509+/-37 nmol/L, P<0.05) were significantly higher in MI+GH than in MI rats and were comparable to controls. Left ventricular myocyte expression of sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA-2) and left ventricular SERCA-2 protein levels were increased in MI+GH compared with MI rats. CONCLUSIONS: Calcium-dependent contractile reserve is depressed in myocytes from rats with postinfarction heart failure. Long-term growth hormone therapy increases contractile reserve by restoring normal augmentation of systolic [Ca2+]i in myocytes from rats with postinfarction heart failure.  相似文献   

2.
Rotavirus infection is the leading cause of severe diarrhea in infants and young children worldwide. The rotavirus nonstructural protein NSP4 acts as a viral enterotoxin to induce diarrhea and causes Ca2+-dependent transepithelial Cl- secretion in young mice. The cellular basis of this phenomenon was investigated in an in vitro cell line model for the human intestine. Intracellular calcium concentration ([Ca2+]i) was monitored in fura-2-loaded HT-29 cells using microscope-based fluorescence imaging. NSP4 (1 nM to 5 microM) induced both Ca2+ release from intracellular stores and plasmalemma Ca2+ influx. During NSP4-induced [Ca2+]i mobilization, [Na+]i homeostasis was not disrupted, demonstrating that NSP4 selectively regulated extracellular Ca2+ entry into these cells. The ED50 of the NSP4 effect on peak [Ca2+]i mobilization was 4.6 +/- 0.8 nM. Pretreatment of cells with either 2.3 x 10(-3) units/ml trypsin or 4.4 x 10(-2) units/ml chymotrypsin for 1-10 min abolished the NSP4-induced [Ca2+]i mobilization. Superfusing cells with U-73122, an inhibitor of phospholipase C, ablated the NSP4 response. NSP4 induced a rapid onset and transient stimulation of inositol 1,4,5-trisphosphate (IP3) production in an IP3-specific radioreceptor assay. Taken together, these results suggest that NSP4 mobilizes [Ca2+]i in human intestinal cells through receptor-mediated phospholipase C activation and IP3 production.  相似文献   

3.
In addition to playing a significant role in cardiac excitation-contraction coupling, intracellular Ca2+ ([Ca2+]i) can regulate gene expression. While the mechanisms regulating expression of Ca2+ channels are not entirely defined, some evidence exists for Ca2+-dependent regulation. Using an adult ventricular myocyte culture system, we determined the effects of Ca2+ on: (1) abundance of mRNA for L-type Ca2+ channel alpha1 subunit (DHP receptor); (2) amount of DHP receptors; and (3) whole-cell Ca2+ current (ICa). Rat ventricular myocytes were cultured for 1-3 days in serum-free medium containing either normal (1.8 mM) or high (4.8 mM) Ca2+. Exposing myocytes to high Ca2+ rapidly elevated [Ca2+]i as determined by fura-2. Northern blot analysis revealed that culturing cells in high Ca2+ produced 1.5-fold increase in mRNA levels for the DHP receptor. The abundance of DHP receptors, determined by ligand binding, was two-fold greater in myocytes after 3 days in high Ca2+. Moreover, peak ICa was larger in myocytes cultured for 3 days in high Ca2+ (-17.8+/-1.5 pA/pF, n=26) than in control cells (-11.0+/-1.0 pA/pF, n=23). Voltage-dependent activation and inactivation, rates of current decay, as well as percent increases in ICa elicited by Bay K8644 were similar in all groups. Therefore, larger ICa is likely to represent a greater number of functional channels with unchanged kinetics. Our data support the conclusion that transient changes in [Ca2+]i can modulate DHP receptor mRNA and protein abundance, producing a corresponding change in functional Ca2+ channels in adult ventricular myocytes.  相似文献   

4.
AIM: To study the mechanisms underlying oxytocin (Oxy)-induced insulin release. METHODS: In a clonal pancreatic beta-cell line, RINm5F cells. RESULTS: Oxy increased insulin release and [Ca2+]i in a concentration-dependent manner. Oxy-induced insulin release was not altered by pretreatment with pertussis toxin (PT). U-73122 (2-8 mumol.L-1), a phospholipase C (PLC) inhibitor, concentration-dependently inhibited Oxy-induced increases in [Ca2+]i with IC50 value of 2.8 +/- 0.2 mumol.L-1. In addition, U-73122 diminished the Oxy-induced increase in intracellular concentration of inositol 1, 4, 5-triphosphate (IP3). U-73122 at 8 mumol.L-1 totally abolished the Oxy-induced increases in [Ca2+]i and IP3; however it reduced the Oxy-induced increase in insulin release only by 36% and 63% in the monolayer and suspended cell preparations, respectively. CONCLUSION: Oxy increases insulin release through both PLC and non-PLC mediated signal transduction mechanisms.  相似文献   

5.
BACKGROUND: The cellular mechanisms that mediate the cardiodepressant effects of intravenous anesthetic agents remain undefined. The objective of this study was to elucidate the direct effects of propofol and ketamine on cardiac excitation-contraction coupling by simultaneously measuring intracellular calcium concentration ([Ca2+]i) and shortening in individual, field-stimulated ventricular myocytes. METHODS: Freshly isolated rat ventricular myocytes were loaded with the Ca2+ indicator, fura-2, and placed on the stage of an inverted fluorescence microscope in a temperature-regulated bath. [Ca2+]i and myocyte shortening (video edge detection) were monitored simultaneously in individual cells that were field-stimulated at 0.3 Hz. RESULTS: Baseline [Ca2+]i (mean +/- SEM) was 80 +/- 12 nM, and resting cell length was 112 +/- 2 microm. Field stimulation increased [Ca2+]i to 350 +/- 23 nM, and the myocytes shortened by 10% of diastolic cell length. Both intravenous anesthetic agents caused dose-dependent decreases in peak [Ca2+]i and shortening. At 300 microM, propofol prolonged time to peak concentration and time to 50% recovery for [Ca2+]i and shortening. In contrast, changes in time to peak concentration and time to 50% recovery in response to ketamine were observed only at the highest concentrations. Neither agent altered the amount of Ca2+ released from intracellular stores in response to caffeine. Propofol but not ketamine, however, caused a leftward shift in the dose-response curve to extracellular Ca2+ for shortening, with no concomitant effect on peak [Ca2+]i. CONCLUSIONS: These results indicate that both intravenous anesthetic agents have a direct negative inotropic effect, which is mediated by a decrease in the availability of [Ca2+]i. Propofol but not ketamine may also alter sarcoplasmic reticulum Ca2+ handling and increase myofilament Ca2+ sensitivity. The effects of propofol and ketamine are primarily apparent at supraclinical concentrations, however.  相似文献   

6.
In this study, passive Ca2+ binding was determined in ventricular homogenates (VH) from neonatal (4-6 days) and adult rats, as well as in digitonin-permeabilized adult ventricular myocytes. Ca2+ binding sites, both endogenous and exogenous (Indo-1 and BAPTA) were titrated. Sarcoplasmic reticulum and mitochondrial Ca2+ uptake were blocked by thapsigargin and Ru360, respectively. Free [Ca2+] ([Ca2+]F) was measured with Indo-1 and bound Ca2+ ([Ca2+]B) was the difference between [Ca2+]F and total Ca2+. Apparent Ca2+ dissociation constants (Kd) for BAPTA and Indo-1 were increased by 10-20 mg VH protein/ml (from 0.35 to 0.92 microM for Indo-1 and from 0.20 to 0.76 microM for BAPTA) and also by ruthenium red in the case of Indo-1. Titration with successive CaCl2 additions (2.5-10 nmoles) yielded delta[Ca2+]B/delta[Ca2+]F for the sum of [Ca2+]B at all three classes of binding sites. From this function, the apparent number of endogenous sites (Ben) and their Kd (Ken) were determined. Similar Ken values were obtained in neonatal and adult VH, as well as in adult myocytes (0.68 +/- 0.14 microM, 0.69 +/- 0.13 microM and 0.53 +/- 0.10 microM, respectively). However, Ben was significantly higher in adult myocytes than in adult VH (1.73 +/- 0.35 versus 0.70 +/- 0.12 nmol/mg protein, P < 0.01), which correspond to approximately 300 and 213 mumol/l cytosol. This indicates that binding sites are more concentrated in myocytes than in other ventricular components and that Ben determined in VH underestimates cellular Ben by 29%. Although Ben values in nmol/mg protein were similar in adult and neonatal VH (0.69 +/- 0.12), protein content was much higher in adult ventricle (125 +/- 7 versus 80 +/- 1 mg protein/g wet weight, P < 0.01). Expressing Ben per unit cell volume (accounting for fractional mitochondrial volume, and 29% dilution in homogenate), the passive Ca2+ binding capacity at high-affinity sites is approximately 300 and 176 mmol/l cytosol in adult and neonatal rat ventricular myocytes, respectively. Additional estimates suggest that passive Ca2+ buffering capacity in rat ventricle increases markedly during the first two weeks of life and that adult levels are attained by the end of the first month.  相似文献   

7.
OBJECTIVES: Human cardiac muscle from failing heart shows a decrease in active tension development and a rise in diastolic tension at stimulation frequencies above 50-60 beats/min due to both systolic and diastolic dysfunction. We have investigated underlying changes in cellular [Ca2+]i regulation. METHODS: Single ventricular myocytes were isolated enzymatically from the explanted hearts of transplant recipients with ischemic cardiomyopathy (nhearts = 5 ncells = 15) or dilated cardiomyopathy (nhearts = 6, ncells = 19). Cells were studied during whole-cell patch clamp with fluo-3 and fura-red as [Ca2+]i indicators (36 +/- 1 degrees C). RESULTS: In current clamp mode (action potential recording), the amplitude of Ca2+ release from the sarcoplasmic reticulum (SR) decreased at stimulation frequencies above 0.5 Hz; this decrease was more pronounced for cells from dilated cardiomyopathy. Diastolic [Ca2+]i increased at 1 and 2 Hz for both groups. Action potential duration (APD90) decreased with frequency in all cells; in addition there was a drop in plateau potential of 10 +/- 1 mV for cells from ischemic cardiomyopathy and of 13 +/- 2 mV for cells from dilated cardiomyopathy. In voltage clamp mode the L-type Ca2+ current showed reversible decrease during stimulation at 1 and 2 Hz. Recovery from inactivation during a double pulse protocol was slow (75 +/- 3% at 500 ms, 89 +/- 3% at 1000 ms) and followed the decay of the [Ca2+]i transient. CONCLUSIONS: The negative force-frequency relation of the failing human heart is due to a decrease in Ca2+ release of the cardiac myocytes at frequencies > or = 0.5 Hz, more pronounced in dilated than in ischemic cardiomyopathy. Inhibition of ICaL at higher frequencies, at least partially related to an increase in diastolic [Ca2+]i, will contribute to this negative staircase because of a decrease in the trigger for Ca2+ release, and of decreased loading of the SR.  相似文献   

8.
1. The purpose of the present study was to explore the different mechanisms of [Ca2+]i oscillations induced by high concentrations of either carbachol (CCh) or extracellular Ca2+ ([Ca2+]o). First, we compared the oscillations induced by CCh at concentrations of 100-300 micromol/L and [Ca2+]o (5 mmol/L) in the single rat ventricular myocyte. Second, we studied CCh- and [Ca2+]o-induced [Ca2+]i oscillations following either interference with the production of inositol trisphosphate (IP3), reductions in cytosolic Ca2+ ([Ca2+]i), inhibition of Ca2+ influx and Na+-Ca2+ exchange or depletion of Ca2+ from its intracellular store. 2. The [Ca2+]i oscillations induced by CCh were frequent and were superimposed on [Ca2+]i transients in electrically stimulated cells, whereas those induced by high [Ca2+]o were occasional and occurred in quiescent cells and between [Ca2+]i transients in electrically stimulated cells. In both cases, [Ca2+]i oscillations were preceded by an increase in resting levels of [Ca2+]i. 3. Carbachol-induced [Ca2+]i oscillations were accompanied by an increase in amplitude and prolongation of the time of decline to 80% of the peak of the [Ca2+]i transient, while high [Ca2+]o-induced [Ca2+]i oscillations were the opposite. 4. A reduction of [Ca2+]o to 0.1 mmol/L and treatment with Ni2+ or ryanodine or 1,2-bis(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid AM (BAPTA-AM) abolished the [Ca2+]i oscillations induced by both CCh and high [Ca2+]o. 5. The calcium channel blockers verapamil and nifedipine and inhibitors of phospholipase C (neomycin and U-73122) abolished the [Ca2+]i oscillations induced by CCh; Li+ accelerated the onset of the [Ca2+]i oscillations induced by CCh. 6. These observations suggest that the mechanisms responsible for the [Ca2+]i oscillations induced by CCh and high [Ca2+]o are different from each other. Other than an increase in extracellular Ca2+ influx as a mechanism common for both CCh- and high [Ca2+]o-induced [Ca2+]i oscillations, the CCh-induced [Ca2+]i oscillations involve influx of Ca2+ via L-type Ca2+ channels, Na+-Ca2+ exchange, mobilization of intracellular Ca2+ and IP3 production.  相似文献   

9.
Systolic [Ca2+]i-transients have been shown to be depressed in isolated ventricular myocytes from patients with terminal heart failure compared to controls. Experiments were performed in human ventricular cells to investigate whether this reduced systolic [Ca2+]i-transient may be due to a decreased Ca(2+)-content of the sarcoplasmic reticulum (SR). Single myocytes were isolated from left ventricular myocardium of patients with terminal heart failure undergoing cardiac transplantation. These results were compared to those obtained from cells of healthy donor hearts that were not suitable for transplantation for technical reasons. [Ca2+]i-transients were recorded from isolated cells under voltage clamp perfused internally with the Ca(2+)-indicator fura-2. The Ca(2+)-content of the SR was estimated by rapid extracellular application of caffeine (10 mM) to open the Ca(2+)-release channel of the SR and comparison of the caffeine-induced [Ca2+]i-transients in cells from patients with heart failure and from controls without heart failure. Upon steady-state depolarizations to +10 mV (maximum of the Ca(2+)-current), [Ca2+]i-transients in cells from patients with heart failure were significantly smaller than in myocytes from undiseased hearts (333 +/- 26 v 596 +/- 80 nM, P < 0.05). Application of caffeine caused a [Ca2+]i-transient that was always larger than during depolarization. Caffeine-induced [Ca2+]i-transients were significantly smaller in cells from diseased hearts compared with controls (970 +/- 129 v 2586 +/- 288 nM, P < 0.01). A positive correlation was found between left ventricular ejection fraction and caffeine-induced [Ca2+]i-transients in these cells. It is concluded, that depressed [Ca2+]i-transients in myocytes from patients with heart failure may be caused by a decreased Ca(2+)-content of the SR possibly due to an altered Ca(2+)-ATPase activity in these hearts. It is not necessary to postulate an additional defect of the Ca(2+)-release function of the SR to account for the alterations of intracellular (Ca2+]i-handling.  相似文献   

10.
Because glycolysis is thought to be important for maintenance of cellular ion homeostasis, the aim of the present study was to examine the role of glycolysis in the control of cytosolic calcium ([Ca2+]i) and cell shortening during conditions of increased calcium influx. Thus, [Ca2+]i and unloaded cell shortening were measured in fura-2/AM loaded rat ventricular myocytes. All cells were superfused with Tyrode's solution containing glucose and pyruvate (to preserve oxidative metabolism), and glycolysis was inhibited by iodoacetate (IAA, 100 microM). Calcium influx was increased, secondary to an increase in intracellular sodium, by addition of veratrine (1 microgram/ml), or directly by either elevating [Ca2+]o from 2 to 5 mM or by exposing the cells to isoproterenol (1 to 100 nm). Veratrine exposure caused a time-dependent increase in both diastolic and systolic [Ca2+]i that resulted in cellular calcium overload and hypercontraction. The rate of increase in [Ca2+]i was more rapid in IAA-treated than in untreated myocytes, leading to a 13+/-3 v 5+/-2% increase (P<0.05) in diastolic [Ca2+]i after 5 min of exposure. The corresponding increases in systolic [Ca2+]i were 43+/-6 and 24+/-5% (P<0.05). Elevated [Ca2+]o resulted in increased [Ca2+]i transient amplitudes and cell shortening. These responses were each attenuated by inhibiting glycolysis, so that the increase was 38+/-5 v 68+/-9% ([Ca2+]i transient amplitude, P<0.05) and 41+/-11 v 91+/-18% (cell shortening, P<0.05). Inhibition of glycolysis did not, however, affect the increase in calcium transient or cell shortening during addition of isoproterenol. We conclude that glycolysis plays an essential role in the maintenance of intracellular calcium homeostasis during severe calcium overload. Glycolysis was also essential for signalling the inotropic effect that accompanied elevation in extracellular calcium, while the changes in intracellular calcium following administration of isoproterenol were not influenced by glycolysis in the present model.  相似文献   

11.
BACKGROUND: We compared the effects of the nitric oxide donor sodium nitroprusside (SNP) on intracellular pH (pHi), intracellular calcium concentration ([Ca2+]i) transients, and cell contraction in hypertrophied adult ventricular myocytes from aortic-banded rats and age-matched controls. METHODS AND RESULTS: pHi was measured in individual myocytes with SNARF-1, and [Ca2+]i transients were measured with indo 1 simultaneously with cell motion. Experiments were performed at 37 degrees C in myocytes paced at 0.5 Hz in HEPES-buffered solution (extracellular pH = 7.40). At baseline, calibrated pHi, diastolic and systolic [Ca2+]i values, and the amplitude of cell contraction were similar in hypertrophied and control myocytes. Exposure of the control myocytes to 10(-6) mol/L SNP caused a decrease in the amplitude of cell contraction (72 +/- 7% of baseline, P < .05) that was associated with a decrease in pHi (-0.10 +/- 0.03 U, P < .05) with no change in peak systolic [Ca2+]i. In contrast, in the hypertrophied myocytes exposure to SNP did not decrease the amplitude of cell contraction or cause intracellular acidification (-0.01 +/- 0.01 U, NS). The cGMP analogue 8-bromo-cGMP depressed cell shortening and pHi in the control myocytes but failed to modify cell contraction or pHi in the hypertrophied cells. To examine the effects of SNP on Na(+)-H+ exchange during recovery from intracellular acidosis, cells were exposed to a pulse and washout of NH4Cl. SNP significantly depressed the rate of recovery from intracellular acidosis in the control cells compared with the rate in hypertrophied cells. CONCLUSIONS: SNP and 8-bromo-cGMP cause a negative inotropic effect and depress the rate of recovery from intracellular acidification that is mediated by Na(+)-H+ exchange in normal adult rat myocytes. In contrast, SNP and 8-bromo-cGMP do not modify cell contraction or pHi in hypertrophied myocytes.  相似文献   

12.
To determine whether the phospholipase C (PLC)/inositol 1,4,5 trisphosphate (IP3)/Ca2+ pathway mediates cardiac arrhythmias induced by kappa-opioid receptor stimulation, the effects of U50,488H, a selective kappa-opioid receptor agonist, on cardiac rhythm in a isolated perfused rat heart, intracellular calcium ([Ca2+]i) in a single ventricular myocyte and IP3 production in myocytes were studied in the presence and absence of PLC inhibitors. U50,488H, the effects of which had been shown to be abolished by a selective kappa-receptor antagonist, nor-binaltorphimine, induced arrhythmias dose-dependently and increased both [Ca2+]i and IP3-production in the heart. More importantly, the effects of U50,488H were blocked by PLC inhibitors, neomycin and streptomycin. To further confirm the selectivity of action of the PLC inhibitor, the effects of another PLC inhibitor U73122 and its inactive structural analog, U73343, on cardiac rhythm in the isolated perfused rat heart were compared. The former did, while the latter did not, block the arrhythmogenic effect of U50,488H. We also determined whether the effects of kappa-receptor stimulation involves a pertussis toxin (PTX)-sensitive G-protein. We found that pretreatment with PTX at 4 microg/l for 10 min, a treatment shown to affect PTX sensitive G-protein-mediated functions, attenuated significantly the U50,488H-induced arrhythmias. The present study provides evidence that kappa-receptor stimulation-induced cardiac arrhythmias involves, at least partly, the PLC/IP3/Ca2+ pathway as well as a PTX sensitive G-protein.  相似文献   

13.
Prior treatment of NG108-15 cells with phosphatase inhibitors including okadaic acid and calyculin A inhibited the elevation of cytosolic Ca2+ concentration ([Ca2+]i) induced by bradykinin by approximately 63%. This inhibition was dependent on the concentration of okadaic acid with an IC50 of 0.15 nM. Okadaic acid treatment only lowered the maximal response of [Ca2+]i increase and had no effect on the EC50 value for bradykinin regardless of the presence of extracellular Ca2+. Neither the capacity of 45Ca2+ accumulation within intracellular nonmitochondrial Ca2+ stores nor the magnitude of [Ca2+]i increase induced by thapsigargin was reduced by the treatment of okadaic acid. In contrast, the same phosphatase inhibitor treatment inhibited the bradykinin-evoked inositol 1,4,5-trisphosphate (IP3) generation, the Mn2+ influx, and the capacity of mitochondrial Ca2+ accumulation. Furthermore, the sensitivity of IP3 in the Ca2+ release was suppressed by okadaic acid pretreatment. Our results suggest that the reduction of bradykinin-induced [Ca2+]i rise by the promotion of protein phosphorylation was attributed to the reduced activity of phospholipase C, the decreased sensitivity to IP3, and the slowed rate of Ca2+ influx. Thus, phosphorylation plays a role in bradykinin-sensitive Ca2+ signaling cascade in NG108-15 cells.  相似文献   

14.
1. The effects of secreted forms of beta-amyloid-precursor proteins (APP(S)s) on the intracellular Ca2+ concentration ([Ca2+]i) were investigated in rat cultured hippocampal neurones. APP695S, a secretory form of APP695, attenuated the increase in [Ca2+]i evoked by glutamate. In addition, APP695S itself evoked an increase in [Ca2+]i in 1 or 2 day-cultured hippocampal cells, but not in 7 to 13 day-cultured cells. 2. Eighty-one percent of neurones which were immunocytochemically positive for microtubule-associated protein 2 responded to APP695S with an increase in [Ca2+]i. 3. APP695S induced a transient rise in [Ca2+]i even in the absence of extracellular Ca2+ and produced an elevation in inositol-1,4,5-trisphosphate (IP3) in a concentration-dependent manner from 100 to 500 ng ml(-1). In the presence of extracellular Ca2+, APP695S caused a transient rise in [Ca2+]i followed by a sustained phase at high [Ca2+]i, suggesting Ca2+ entry from the extracellular space. 4. The [Ca2+]i elevation was mimicked by amino terminal peptides of APPs, but not by carboxy terminal peptides. 5. These results taken together suggest that APP695S induces an increase in [Ca2+]i in hippocampal neurones through an IP3-dependent mechanism that changes according to the stage of development.  相似文献   

15.
Effects on isometric tension generation and maximum velocity of unloaded shortening after exposure to cAMP-dependent protein kinase (PKA) were investigated in rat enzymatically isolated, tritonized ventricular myocytes. Exposure of myocytes to PKA in the presence of [32P]ATP resulted in phosphorylation of troponin I and C protein. Ca2+ sensitivity of isometric tension was assessed as pCa50, ie, the [Ca2+] at which tension was 50% of maximum, and was lower after PKA treatment (pCa50 5.58) than before PKA treatment (pCa50 5.74). This suggests beta-adrenergic stimulation of the heart and subsequent increases in PKA activity and phosphorylation of troponin I and C protein lead to a significant decrease in tension-generating ability at a given submaximum [Ca2+]. Unloaded shortening velocity was determined by measuring the time required to take up various amounts of slack imposed at one end of the cardiac myocyte preparation. Unloaded shortening velocity during maximum activation was 2.88 +/- 0.11 muscle lengths per second (mean +/- SEM) before PKA exposure and 2.86 +/- 0.13 muscle lengths per second after PKA exposure. Unloaded shortening velocity during 40% of maximum activation was 1.91 +/- 0.25 muscle lengths per second before PKA exposure and 2.17 +/- 0.15 muscle lengths per second after PKA exposure. The absence of an effect of PKA on unloaded shortening velocity in skinned ventricular myocytes suggests that beta-adrenergic stimulation of myocardium either does not affect myofilament velocity of shortening or alters velocity of shortening by a non-PKA-dependent process.  相似文献   

16.
We measured [Ca2+]i and [Na+]i in isolated transgenic (TG) mouse myocytes overexpressing the Na+-Ca2+ exchanger and in wild-type (WT) myocytes. In TG myocytes, the peak systolic level and amplitude of electrically stimulated (ES) [Ca2+]i transients (0.25 Hz) were not significantly different from those in WT myocytes, but the time to peak [Ca2+]i was significantly prolonged. The decline of ES [Ca2+]i transients was significantly accelerated in TG myocytes. The decline of a long-duration (4-s) caffeine-induced [Ca2+]i transient was markedly faster in TG myocytes, and [Na+]i was identical in TG and WT myocytes, indicating that the overexpressed Na+-Ca2+ exchanger is functionally active. The decline of a short-duration (100-ms) caffeine-induced [Ca2+]i transient in 0 Na+/0 Ca2+ solution did not differ between the two groups, suggesting that the sarcoplasmic reticulum (SR) Ca2+-ATPase function is not altered by overexpression of the Na+-Ca2+ exchanger. There was no difference in L-type Ca2+ current density in WT and TG myocytes. However, the sensitivity of ES [Ca2+]i transients to nifedipine was reduced in TG myocytes. This maintenance of [Ca2+]i transients in nifedipine was inhibited by Ni2+ and required SR Ca2+ content, consistent with enhanced Ca2+ influx by reverse Na+-Ca2+ exchange, and the resulting Ca2+-induced Ca2+ release from SR. The rate of rise of [Ca2+]i transients in nifedipine in TG myocytes was much slower than when both the L-type Ca2+ current and the Na+-Ca2+ exchange current function together. In TG myocytes, action potential amplitude and action potential duration at 50% repolarization were reduced, and action potential duration at 90% repolarization was increased, relative to WT myocytes. These data suggest that under these conditions, overexpression of the Na+-Ca2+ exchanger in TG myocytes accelerates the decline of [Ca2+]i during relaxation, indicating enhanced forward Na+-Ca2+ exchanger function. Increased Ca2+ influx also appears to occur, consistent with enhanced reverse function. These findings provide support for the physiological importance of both these modes of Na+-Ca2+ exchange.  相似文献   

17.
The temporal changes in cytosolic free Ca2+ ([Ca2+]i), Ca2+-dependent membrane currents (Im), and gap junctional current (Ij) elicited by acetylcholine (ACh) were measured in rat pancreatic acinar cells using digital imaging and dual perforated patch-clamp recording. ACh (50 nM-5 microM) increased [Ca2+]i and evoked Im currents without altering Ij in 19 of 37 acinar cell pairs. Although [Ca2+]i rose asynchronously in cells comprising a cluster, the delay of the [Ca2+]i responses decreased with increasing ACh concentrations. Perfusion of inositol 1,4,5-trisphosphate (IP3) into one cell of a cluster resulted in [Ca2+]i responses in neighboring cells that were not necessarily in direct contact with the stimulated one. This suggests that extensive coupling between acinar cells provides a pathway for cell-to-cell diffusion of Ca2+-releasing signals. Strikingly, maximal (1-5 microM) ACh concentrations reduced Ij by 69 +/- 15% (n = 9) in 25% of the cell pairs subjected to dual patch-clamping. This decrease occurred shortly after the Im peak and was prevented by incubating acinar cells in a Ca2+-free medium, suggesting that uncoupling was subsequent to the initiation of the Ca2+-mobilizing responses. Depletion of Ca2+-sequestering stores by thapsigargin resulted in a reduction of intercellular communication similar to that observed with ACh. In addition, ACh-induced uncoupling was prevented by blocking nitric oxide production with L-nitro-arginine and restored by exposing acinar cells to dibutyryl cGMP. The results suggest that ACh-induced uncoupling and capacitative Ca2+ entry are regulated concurrently. Closure of gap junction channels may occur to functionally isolate nearby cells differing in their intrinsic sensitivity to ACh and thereby to allow for sustained activity of groups of secreting cells.  相似文献   

18.
Inositol 1,4,5-trisphosphate (IP3) [corrected] binding to its receptors (IP3R) in the endoplasmic reticulum (ER) activates Ca2+ release from the ER lumen to the cytoplasm, generating complex cytoplasmic Ca2+ concentration signals including temporal oscillations and propagating waves. IP3-mediated Ca2+ release is also controlled by cytoplasmic Ca2+ concentration with both positive and negative feedback. Single-channel properties of the IP3R in its native ER membrane were investigated by patch clamp electrophysiology of isolated Xenopus oocyte nuclei to determine the dependencies of IP3R on cytoplasmic Ca2+ and IP3 concentrations under rigorously defined conditions. Instead of the expected narrow bell-shaped cytoplasmic free Ca2+ concentration ([Ca2+]i) response centered at approximately 300 nM-1 microM, the open probability remained elevated (approximately 0.8) in the presence of saturating levels (10 microM) of IP3, even as [Ca2+]i was raised to high concentrations, displaying two distinct types of functional Ca2+ binding sites: activating sites with half-maximal activating [Ca2+]i (Kact) of 210 nM and Hill coefficient (Hact) approximately 2; and inhibitory sites with half-maximal inhibitory [Ca2+]i (Kinh) of 54 microM and Hill coefficient (Hinh) approximately 4. Lowering IP3 concentration was without effect on Ca2+ activation parameters or Hinh, but decreased Kinh with a functional half-maximal activating IP3 concentration (KIP3) of 50 nM and Hill coefficient (HIP3) of 4 for IP3. These results demonstrate that Ca2+ is a true receptor agonist, whereas the sole function of IP3 is to relieve Ca2+ inhibition of IP3R. Allosteric tuning of Ca2+ inhibition by IP3 enables the individual IP3R Ca2+ channel to respond in a graded fashion, which has implications for localized and global cytoplasmic Ca2+ concentration signaling and quantal Ca2+ release.  相似文献   

19.
Oscillations in cytosolic free Ca2+ concentration ([Ca2+]cyt) are an important component of Ca2+-based signal transduction pathways. This fact has led us to investigate whether oscillations in [Ca2+]cyt are involved in the response of stomatal guard cells to the plant hormone abscisic acid (ABA). We show that ABA induces oscillations in guard-cell [Ca2+]cyt. The pattern of the oscillations depended on the ABA concentration and correlated with the final stomatal aperture. We examined the mechanism by which ABA generates oscillations in guard-cell [Ca2+]cyt by using 1-(6-[17beta-3-methoxyestra-1,3, 5(10)-trien-17-yl]aminohexyl)-1H-pyrrole-2,5-dione (U-73122), an inhibitor of phosphoinositide-specific phospholipase C (PI-PLC)-dependent processes in animals. U-73122 inhibited the hydrolysis of phosphatidylinositol 4,5-bisphosphate by a recombinant PI-PLC, isolated from a guard-cell-enriched cDNA library, in a dose-dependent manner. This result confirms that U-73122 is an inhibitor of plant PI-PLC activity. U-73122 inhibited both ABA-induced oscillations in [Ca2+]cyt and stomatal closure. In contrast, U-73122 did not inhibit external Ca2+-induced oscillations in guard-cell [Ca2+]cyt and stomatal closure. Furthermore, there was no effect of the inactive analogue 1-(6-[17beta-3-methoxyestra-1,3, 5(10)-trien-17-yl]aminohexyl)-2,5-pyrrolidinedione on recombinant PI-PLC activity or ABA-induced and external Ca2+-induced oscillations in [Ca2+]cyt and stomatal closure. This lack of effect suggests that the effects of U-73122 in guard cells are the result of inhibition of PI-PLC and not a consequence of nonspecific effects. Taken together, our data suggest a role for PI-PLC in the generation of ABA-induced oscillations in [Ca2+]cyt and point toward the involvement of oscillations in [Ca2+]cyt in the maintenance of stomatal aperture by ABA.  相似文献   

20.
Mistletoe lectin I (ML I) from Viscum album inhibits cell growth and induces apoptosis (programmed cell death) in several cell types. Because increases in cytosolic Ca2+ concentration ([Ca2+]i) constitute a signal for the induction of apoptosis, we studied the effects of ML I on basal [Ca2+]i, receptor-mediated rises in [Ca2+]i and cell viability, using human U-937 promonocytes as model system. Treatment of U-937 cells with ML I (30-100 ng/ml) significantly increased basal [Ca2+]i. ML I (10-30 ng/ml) enhanced histamine-induced rises in [Ca2+]i up to five-fold. The effect of histamine was inhibited by clemastine but not by famotidine, indicative for its mediation via H1-receptors. ML I additionally enhanced the stimulatory effect of complement C5a on [Ca2+]i, whereas the effect of ATP was unaffected. ML I did not induce responsiveness of U-937 cells towards a bacteria-derived chemotactic peptide. ML I up to 10 ng/ml did not affect cell viability and growth of U-937 cells. ML I at 30 ng/ml moderately inhibited cell growth and reduced cell viability. At 100 ng/ml, ML I was strongly cytotoxic. Our data support the view that Ca2+ plays a role as intracellular signal molecule in the induction of apoptosis and point to an accelerating role of H1- and C5a-receptors in the regulation of this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号