首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
目前电动汽车动力输出的来源主要是动力电池,其荷电状态(State of Charge,SOC)表示电池的剩余电量情况,精确估算SOC对于电池的使用安全有重要意义。将蝴蝶优化算法(Butterfly Optimization Algorithm,BOA)进行改进并用于优化BP神经网络估算动力电池SOC,解决了普通BP网络估计SOC时遇到的训练时间长、收敛慢、精度较低、易陷入局部最优解的问题;同时提升了全局搜索速度,选取电压和电流为输入变量、SOC为输出变量,根据误差的大小调整神经网络的权值和阈值。仿真结果表明,优化后得到的SOC估计结果误差率控制在1.1%以内,该方法寻优速度快,具有更好的鲁棒性。  相似文献   

2.
针对汽车锂电池的荷电状态(SOC)的问题,基于Thevenin电路为等效电路并且应用扩展卡尔曼算法(EKF)结合神经网络算法进行估计。在进行卡尔曼滤波算法估算过程中,需要用到实时的估算模型参数值(最新值),即在不同的SOC下模型的参数不同。传统做法是把SOC与各个参数的关系进行普通的拟合,这种方法在拟合过程中存在较大误差。为了解决这个问题,利用神经网络拟合各个电路模型参数与SOC关系曲线。试验结果表明,与单纯的扩展卡尔曼算法相比,该方法能够准确估计电池剩余电量,误差小于3%。  相似文献   

3.
为有效解决储能电池中剩余电量的管理问题,提出基于双卡尔曼滤波的电池荷电状态(state of charge,SOC)估算研究方法.分析二阶戴维南电池等效模型,获得其状态空间方程和输出方程,利用泰勒公式对其进行线性化处理,对比分析锂离子电池的离线参数辨识和在线参数辨识结果,结合协同滤波算法进一步提升卡尔曼滤波算法的辨识精度.在M at-lab环境下编写基于双卡尔曼滤波算法的SOC估算以及验证程序,在算法初值准确和有误差两种情况下进行验证,并与其它算法进行比较,验证了双卡尔曼滤波算法精度高,收敛性好.  相似文献   

4.
锂离子电池组的荷电状态SOC是描述电池剩余电量的重要参数,常用SOC估算方法有:安时法、开路电压法、神经网络法、卡尔曼滤波法、扩展卡尔曼滤波算法等。本文分析了影响电池荷电状态的SOC的影响因素,对各种SOC估算算法进行了比较研究,并对扩展卡尔曼滤波算法进行了Matlab仿真。仿真结果表明,卡尔曼滤波法对电池荷电状态的估算有较好的修正能力,并且容错能力较强。  相似文献   

5.
基于GA-BP神经网络的电池剩余电量的预测   总被引:1,自引:0,他引:1  
研究动力电池剩余电量问题,电池剩余电量的准确预测一直以来都是一个难点.由于剩余电量与电流、内阻和温度有关,电池内部复杂的电化学反应导致了电池电压不能线性反映电池的剩余电量,传统的方法往往会有较大的误差.BP神经网络的特点是可以逼近任意的非线性函数,而BP神经网络并非完美的神经网络,采用用遗传算法优化BP神经网络可以克服其缺点,更好的预测电池的剩余电量.实验结果证明,所用的GA - BP神经网络方法具有反应快,误差小的特点,达到了预先设计的目的.  相似文献   

6.
为确定动力电池的剩余电量和峰值功率这两个关键指标, 提出一种基于数据驱动的在线参数辨识方法, 通 过递归最小二乘法精确计算电池的实时参数; 然后设计了一种基于自适应扩展卡尔曼滤波的多状态联合估计算法, 准确估计电池的实时荷电状态; 并在电压、剩余电量和单体峰值电流的多约束条件下, 建立多采样间隔持续峰值功 率估算的数学模型. 最后在MATLAB/Simulink环境下搭建基于纯电动汽车实际运行工况的硬件在环测试模型. 结 果表明: 在初始误差较大时, 剩余电量的估计误差在3%左右, 硬件在环测试系统的端电压误差保持在20 mV以内, 峰值功率的平均误差为4.9745 W, 为联合估计算法的准确性提供了可靠理论依据.  相似文献   

7.
针对现有方法难以准确地估算山体滑坡体积的问题,引入人工智能算法,提出耦合迁移学习与微分算法的低空摄影测量山体滑坡方量估算方法。首先,利用SfM与SGM密集匹配等算法从低空无人机立体影像中解算出高精度三维密集点云,结合可见光植被指数和双边滤波算法从密集点云中剥离出目标区地面点云;然后,构建深度神经网络插值模型来表征二维坐标与高程之间的非线性映射关系,并基于参数共享的迁移学习来自适应优化深度神经网络以实现滑坡目标区高程值预测,进而重构滑坡区域的数字地表模型;最后,基于目标区滑坡前后数字地表模型高程差值和微分算法实现山体滑坡方量估算。实验结果表明,该方法平均相对误差为2.7%,相比常用的方法,显著提高了滑坡方量估计精度,并能适应不同地形条件下滑坡方量估算。  相似文献   

8.
针对电传动车辆用动力电池组荷电状态(SOC)非线性强、普通神经网络模型预测精度低的问题,提出利用粒子群优化神经网络权值和阈值的预测方法,建立基于该方法的BP神经网络电池SOC训练模型。为克服粒子群算法容易陷入局部最优的缺点,用混沌变量初始化粒子位置,采用可避免粒子高度聚集的算法,提高模型的预测精度。仿真结果表明,使用该方法估算电池的SOC更具快速性、准确性和稳定性。  相似文献   

9.
不同池化模型的卷积神经网络学习性能研究   总被引:1,自引:1,他引:0       下载免费PDF全文
目的 基于卷积神经网络的深度学习算法在图像处理领域正引起广泛关注。为了进一步提高卷积神经网络特征提取的准确度,加快参数收敛速度,优化网络学习性能,通过对比不同的池化模型对学习性能的影响提出一种动态自适应的改进池化算法。方法 构建卷积神经网络模型,使用不同的池化模型对网络进行训练,并检验在不同迭代次数下的学习结果。在现有算法准确率不高和收敛速度较慢的情况下,通过使用不同的池化模型对网络进行训练,从而构建一种新的动态自适应池化模型,并研究在不同迭代次数下其对识别准确率和收敛速度的影响。结果 通过对比实验发现,使用动态自适应池化算法的卷积神经网络学习性能最优,在手写数字集上的收敛速度最高可以提升18.55%,而模型对图像的误识率最多可以降低20%。结论 动态自适应池化算法不但使卷积神经网络对特征的提取更加精确,而且很大程度地提高了收敛速度和模型准确率,从而达到优化网络学习性能的目的。这种模型可以进一步拓展到其他与卷积神经网络相关的深度学习算法。  相似文献   

10.
针对电加热烟具电池在实际使用过程中难以测量的问题,笔者提出利用Elman神经网络对电池电量进行预测。首先根据实际电池工作状态下的电池电压、内阻、使用时间以及电池电量等历史数据,建立基于Elman神经网络的电池电量监控模型。运用多层Elman神经网络模型对某电子产品中的锂电池实时监测电量,经仿真和实际应用验证了此模型的可行性。  相似文献   

11.
随着电力通信网络规模的不断扩大,电力通信网络不间断地产生海量通信数据。同时,对通信网络的攻击手段也在不断进化,给电力通信网络的安全造成极大威胁。针对以上问题,结合Spark大数据计算框架和PSO优化神经网络算法的优点,提出基于Spark内存计算框架的并行PSO优化神经网络算法对电力通信网络的安全态势进行预测。本研究首先引入Spark计算框架,Spark框架具有内存计算以及准实时处理的特点,符合电力通信大数据处理的要求。然后提出PSO优化算法对神经网络的权值进行修正,以增加神经网络的学习效率和准确性。之后结合RDD的并行特点,提出了一种并行PSO优化神经网络算法。最后通过实验比较可以看出,基于Spark框架的PSO优化神经网络算法的准确度高,且相较于传统基于Hadoop的预测方法在处理速度上有显著提高。  相似文献   

12.
小基站的密集随机部署会产生严重干扰和较高能耗问题,为降低网络干扰、保证用户网络服务质量(QoS)并提高网络能效,构建一种基于深度强化学习(DRL)的资源分配和功率控制联合优化框架。综合考虑超密集异构网络中的同层干扰和跨层干扰,提出对频谱与功率资源联合控制能效以及用户QoS的联合优化问题。针对该联合优化问题的NP-Hard特性,提出基于DRL框架的资源分配和功率控制联合优化算法,并定义联合频谱和功率分配的状态、动作以及回报函数。利用强化学习、在线学习和深度神经网络线下训练对网络资源进行控制,从而找到最佳资源和功率控制策略。仿真结果表明,与枚举算法、Q-学习算法和两阶段算法相比,该算法可在保证用户QoS的同时有效提升网络能效。  相似文献   

13.
针对选择性催化还原(SCR,selective catalytic reduction)脱硝系统脱硝过程存在非线性、多工况等复杂特点,提出一种基于MiniBatchKMeans聚类与Stacking模型融合的SCR脱硝过程NOX预测方法;该方法通过应用MiniBatchKMeans聚类算法对训练集进行工况聚类与划分优化,建立基于XGBoost、随机森林、LightGBM以及线性回归的Stacking融合框架预测模型(Stacking-XRLL),实现电站SCR系统多变工况下NOX排放的精准预测;以广东某电站SCR系统脱硝过程中NOX排放数据为例进行建模仿真与实验,结果表明与单一建模方法多层前馈神经网络(BP)、长短期记忆神经网络(LSTM)以及门控循环单元神经网络(GRU)相比,Stacking-XRLL建模方法的平均预测精确度达到了99%,并最终结合建立好的深度确定性策略梯度(DDPG)强化学习模型,实现电站SCR脱硝过程的参数优化控制。  相似文献   

14.
针对传统机器学习算法对于流量分类的瓶颈问题,提出基于一维卷积神经网络模型的应用程序流量分类算法。将网络流量数据集进行数据预处理,去除无关数据字段,并使数据满足卷积神经网络的输入特性。设计了一种新的一维卷积神经网络模型,从网络结构、超参数空间以及参数优化方面入手构造了最优分类模型。该模型通过卷积层自主学习数据特征,解决了传统基于机器学习的流量分类算法中特征选择问题。通过网络公开数据集进行模型测试,相比于传统的一维卷积神经网络模型,所设计的神经网络模型的分类准确率提升了16.4%,总分类时间节省了71.48%。另外在类精度、召回率以及[F1]分数方面都有较好的提升。  相似文献   

15.
为设计出简便高效的方法搜索最优神经网络结构,提出一种改进鲸鱼优化算法的浅层神经网络搜索方法.该方法首先通过模拟鲸鱼狩猎的个体偏好行为和鲸鱼群位置移动的非线性权值更新机制对传统鲸鱼优化算法进行改进;然后将改进鲸鱼优化算法作为浅层BP神经网络结构搜索策略,构建基于浅层BP神经网络的最优网络结构的权值阈值搜索优化方法.数值实验结果表明,改进的鲸鱼优化算法不仅在求解不同维复杂函数上具有良好的寻优性能,而且通过改进鲸鱼优化算法搜索得到的最优浅层BP神经网络结构在回归任务中具有更好的预测精度和泛化性能.  相似文献   

16.
为提高光伏发电功率预测精度,提出一种基于相似日理论和改进的IPSO-Elman神经网络模型的短期光伏发电功率预测方法。将历史数据细分为不同季节不同天气类型的多个子集,通过灰色关联度和余弦相似度组合而成的综合关联度指标筛选相似日。针对标准粒子群算法的缺陷,提出一种改进的自适应混沌变异粒子群算法(IPSO)来优化Elman神经网络,将优化得出的最优权值和阈值作为初始值建立IPSO-Elman神经网络模型,对3种不同季节和天气类型条件下的光伏发电功率分别预测。选用甘肃省某光伏电站2014年数据进行实例分析,结果表明,IPSO-Elman模型在不同天气类型条件下的功率预测效果都有明显提高。  相似文献   

17.
电力负荷预测是输电网络扩展和规划及合理电力调度的关键手段。针对电力负荷时间序列的非线性和复杂性特征,提出结合小波变换与改进麻雀搜索算法优化小波神经网络的电力负荷预测模型ISSA-WNN。设计改进麻雀搜索算法ISSA对小波神经网络的关键参数初值寻优,有效解决梯度调参易陷入局部最优及对参数初值敏感的不足,提升模型学习能力。对标准麻雀搜索算法SSA改进,引入Logistic-Tent混合混沌种群初始化、发现者/警戒者自适应更新、跟随者可变对数螺旋更新和高斯-柯西混合变异策略提升算法寻优能力。利用小波变换对电力负荷样本分解与重构,降低负荷时序的无序性和波动性,在此基础上构建新的电力负荷预测模型ISSA-WNN。实验结果表明,与标准小波神经网络模型WNN和标准麻雀搜索算法优化小波神经网络模型SSA-WNN相比,预测模型ISSA-WNN的平均绝对百分比误差和均方根误差指标值平均可以降低18.42%和21.21%,其拟合能力更强,预测性能更加稳定。  相似文献   

18.
Geno-mathematical identification of the multi-layer perceptron   总被引:1,自引:0,他引:1  
In this paper, we will focus on the use of the three-layer backpropagation network in vector-valued time series estimation problems. The neural network provides a framework for noncomplex calculations to solve the estimation problem, yet the search for optimal or even feasible neural networks for stochastic processes is both time consuming and uncertain. The backpropagation algorithm—written in strict ANSI C—has been implemented as a standalone support library for the genetic hybrid algorithm (GHA) running on any sequential or parallel main frame computer. In order to cope with ill-conditioned time series problems, we extended the original backpropagation algorithm to a K nearest neighbors algorithm (K-NARX), where the number K is determined genetically along with a set of key parameters. In the K-NARX algorithm, the terminal solution at instant t can be used as a starting point for the next t, which tends to stabilize the optimization process when dealing with autocorrelated time series vectors. This possibility has proved to be especially useful in difficult time series problems. Following the prevailing research directions, we use a genetic algorithm to determine optimal parameterizations for the network, including the lag structure for the nonlinear vector time series system, the net structure with one or two hidden layers and the corresponding number of nodes, type of activation function (currently the standard logistic sigmoid, a bipolar transformation, the hyperbolic tangent, an exponential function and the sine function), the type of minimization algorithm, the number K of nearest neighbors in the K-NARX procedure, the initial value of the Levenberg–Marquardt damping parameter and the value of the neural learning (stabilization) coefficient α. We have focused on a flexible structure allowing addition of, e.g., new minimization algorithms and activation functions in the future. We demonstrate the power of the genetically trimmed K-NARX algorithm on a representative data set.  相似文献   

19.
为解决电力系统中存在的多种时间尺度下经济调度和发电控制的协同问题,即长时间尺度下优化,短时间尺度下优化和实时控制的问题,本文提出了一种统一时间尺度的实时经济发电调度和控制框架,并为该框架提出了懒惰强化学习方法(Lazy reinforcement learning,LRL).该方法将懒惰控制器引入以人工社会——计算实验——平行执行和社会系统为基础的强化学习中,使得机组组合,经济调度,自动发电控制和发电命令调配的问题有机结合在一起,取代过去传统的发电控制框架.为了减少仿真所需的真实时间,平行系统包含多个虚拟系统和一个真实系统.仿真实验比较了懒惰学习算法,松弛人工网络以及4608种组合常规发电控制算法在IEEE新英格兰10机39节点仿真系统的控制效果.实验表明,懒惰强化学习方法的控制效果最优.仿真结果验证了懒惰强化学习方法在基于ACP和社会系统的REG框架下具有有效性和可行性.  相似文献   

20.
为了有效抑制变换域通信网络干扰信号,改善信噪比,研究了基于深度卷积神经网络的变换域通信网络抗干扰优化算法。应用傅里叶变换方法将信号从时域转换到频域,并以傅里叶变换通信信号获得的参数为依据构建干扰信号模型;嵌入干扰信号模型以形成接收信号,然后对接收信号进行处理并存储在干扰数据库中,利用深度卷积神经网络完成干扰信号的特征学习与干扰估计,并根据干扰估计结果,在接收信号中去除干扰信号,完成变换域通信网络抗干扰优化。实验结果表明:该算法可有效完成变换域通信网络抗干扰优化,优化后通信信号的信噪比改善性能与误码性能均较佳,输出的通信信号几乎无干扰信号存在。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号