共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
神经网络基于粒子群优化的学习算法研究 总被引:24,自引:0,他引:24
研究神经网络基于粒子群优化的学习算法,将粒子群优化算法用于神经网络的学习训练,并与遗传算法进行了比较,结果表明,神经网络基于粒子群优化的学习算法简单容易实现,而且能更快地收敛于最优解。 相似文献
4.
海洋设备的无损检测对于保障设备安全使用至关重要,由于设备所处的海洋环境特殊,要实现对海洋设备缺陷位置的准确估计难度较大.论文提出了一种基于粒子群优化BP神经网络(PSO-BP)预测设备缺陷位置的方法.通过模拟了海洋检测环境,用钢板作为实验对象,用超声波探伤仪对缺陷钢板进行了数据采集,获取了水下钢板的实时数据.通过粒子群算法对BP网络进行优化后对数据进行分析,对比缺陷出现的实际位置和预测位置,证明了粒子群优化的BP神经网络对于超声波检测的缺陷出现位置具有较好的预测效果. 相似文献
5.
崔乃丹 《自动化技术与应用》2022,41(4):148-150
本次通过基于粒子群优化算法与BP神经网络相结合的方式对高铁客运量进而预测,利用粒子群优化算法对BP神经网络进行优化与训练,通过经过改进的BP神经网络对高铁客运量进行预测.经实验研究发现,本次研究所提出的预测算法比常规BP神经网络模型预测精度更高,在样本数据量较少的情况下有明显的应用优势. 相似文献
6.
在分析人耳Gabor特征基础上,提出一种主成分分析降维并利用基于粒子群优化训练的人工神经网络对部分遮挡人耳进行识别方法。选取了PCA方法降维后人耳图像的Gabor特征值作为人工神经网络训练样本,利用粒子群优化算法与多层前馈网络结合算法训练神经网络。与多种方法对比的实验表明,针对部分遮挡人耳的测试实验,基于Gabor+PCA特征与粒子群算法的部分遮挡人耳识别方法具有高识别性能,取得好的效果。 相似文献
7.
讨论了利用多粒子群优化算法(Multi-PSO)和径向基函数(RBF)神经网络进行缺陷参数红外识别的途径.PSO算法可以不用计算梯度,算法通用,而使用RBF神经网络作为代理模型,极大简化了复杂、费时的有限元计算,其中训练RBF神经网络的样本由有限元软件的计算结果产生.提出的多粒子群优化算法将粒子群分为若干子群,并利用粒子本身、粒子所在子群以及全局的最优解来更新粒子的速度与位置,该方法收敛速度较慢,但有可能找到问题的多个极小值.最后给出了该方法在缺陷参数红外识别中一个简单的应用例子. 相似文献
8.
粒子群优化算法又称微粒群算法,是-种智能优化算法,主要用于优化函数、训练神经网络,以及其他进化算法的应用领域。本文简介了粒子群优化算法的发展历史及现状、主要分类,并以国内外专利申请数据为分析样本,从专利逐年变化的申请量和申请人分布等角度进行了分析和研究。 相似文献
9.
本文提出了基于改进型粒子群优化的BP网络学习算法。在该算法中,首先改进了传统的BP算法,有效地使得网络中输入层、隐含层和输出层结点个数达到一个最优解。然后,用粒子群优化算法替代了传统BP算法中的梯度下降法,使得改进后的算法具有不易陷入局部极小、泛化性能好等特点,并将该算法应用在了股票预测的应用设计中。结果证明明:该算法能够明显减少迭代次数,提高收敛精度,其泛化性能也优于传统BP算法。 相似文献
10.
基于粒子群优化的BP网络学习算法 总被引:25,自引:0,他引:25
本文提出一种新颖的基于粒子群优化的BP网络学习算法,该算法是一种全局随机优化算法。用Iris分类问题,将所提出的算法与BP算法作了对比实验。实验结果表明:所提出的算法性能优于BP算法,而且具有良好的收敛性。 相似文献
11.
基于混沌搜索的粒子群优化算法 总被引:28,自引:6,他引:28
粒子群优化算法(PSO)是一种有效的随机全局优化技术。文章把混沌优化搜索技术引入到PSO算法中,提出了基于混沌搜索的粒子群优化算法。该算法保持了PSO算法结构简单的特点,改善了PSO算法的全局寻优能力,提高的算法的收敛速度和计算精度。仿真计算表明,该算法的性能优于基本PSO算法。 相似文献
12.
13.
黄酮,是桑黄真菌液体发酵的二级产物,具有重要的医药价值,本文提出了一种结合粒子群算法和BP神经网络的混合智能算法,用于优化桑黄液体发酵的实验环境和提高黄酮产量.本文中的算法基于25组桑黄液体发酵的实验数据,训练BP神经网络模型作为黄酮产量的预测模型,实验中与传统响应面方法中的数学回归模型做了比对试验,预测准确度提高了15%.BP神经网络预测模型作为评价函数结合粒子群算法进行实验环境寻优,通过数据模拟实验,获得了桑黄液体发酵的最佳培养条件,桑黄黄酮的产量由之前的约1532.83 μg/mL提高到约1896.4 μg/mL,产量提高了约23.72%. 相似文献
14.
15.
16.
17.
18.
支持向量机(Support Vector Machine,SVM)对内部参数有着极高的依赖性,因此参数的好坏直接决定了SVM的分类效果,比如径向基核函数的参数。为了寻找出与分类问题相契合的参数,将样本数据投影到高维度特征空间,从而在特征空间中计算类内平均距离与类外中心距离之差,并将其作为参数评估的适应值;利用粒子群算法的全局寻优能力,在定义域内生成种群以代表不同的参数取值;利用粒子的随机游走来进行最优参数搜索,并将结果代入SVM进行样本训练。将所提算法与网格算法等进行了比较,结果表明所提算法的参数设定更加准确,分类准确率有显著提高,且算法复杂度并没有明显增加。 相似文献
19.