共查询到18条相似文献,搜索用时 62 毫秒
1.
作为目标检测领域最突出的问题,遮挡和多尺度严重影响了算法的召回率和准确率。针对以上问题,该文从感受野入手,提出了一种基于空洞卷积金字塔网络(ACFPN)的目标检测算法。首先,将不同尺寸的空洞卷积层引入特征金字塔网络(FPN)中,构建混合感受野模块(HRFM),旨在控制参数量的条件下,通过增大感受野获取更多全局特征信息,解决目标的遮挡问题;其次,改进FPN的结构,设计低层嵌入特征金字塔模块(LEFPM),将浅层特征细节信息和高层特征语义信息相融合,提高特征图的丰富度和表征能力,增强模型的尺度适应性;特别地,针对漏检问题,引入FCOS算法中的无锚框(AF)机制,减少了候选框的冗余,进一步提高了定位精度。最后在公开数据集上进行测试,该算法在检测精度上大幅提升。 相似文献
2.
对于目标检测任务,深度神经网络模型中的一阶段网络结构存在两个问题.首先,网络结构中的锚框超参数设计的合适与否将影响整个网络的训练结果;其次,较大的降采样因子会影响目标的定位能力.针对这两个问题,提出了多尺度定位提升网络模型.重新设计了一阶段网络模型结构,并且提出了更好的锚框超参数选择方案,它在保证一阶段网络效率的同时,... 相似文献
3.
针对目标检测中多类别、多尺度和背景复杂而导致的SSD (Single Shot Multibox Detector)算法检测精度不高的问题,提出了一种多尺度特征增强的改进SSD目标检测算法。首先将SSD网络模型的高层特征依次向下与浅层特征融合,构造一种多尺度目标检测结构。然后利用注意力机制对特征进行进一步的优化,从而达到增强网络模型特征提取的目的。最后用DIoU-NMS来处理图像目标中冗余框的问题,减少目标的漏检。在公开的NWPU VHR-10遥感数据集上将该方法与其他算法进行对比实验,其m AP较传统的SSD算法提高了6.7%。最后将改进后的算法应用于地铁安检图片检测,并在此数据集上进行消融实验来验证此算法每一阶段的有效性。 相似文献
4.
对双阶段目标检测模型Faster R-CNN进行火灾检测应用的改进.采用Resnet101模型作为特征提取网络,使用特征金字塔结构FPN提取了Resnet101的浅层特征和高层特征,将Resnet101的浅层特征图输入Inception Module结构提取多种尺寸的卷积特征,使用像素注意力机制和信道注意力机制对目标位... 相似文献
5.
复杂条件下特殊目标的精确检测是增强特定场景态势生成和预测能力的关键因素。目前的技术不能克服航拍视频中出现的烟雾和遮挡干扰、目标高度变化、尺度不一等问题。因此,提出一个多特征交叉融合及跨层级联的航拍特殊目标检测算法(YOLOv5-MFLC)。针对实际特殊目标保密性高、航拍图像资源匮乏的问题,构建了一个基于真实场景的航拍特殊目标数据集,并采用随机拼接和随机提取嵌入的方法进行数据增强以提高目标多样性和泛化性;针对复杂背景干扰问题,构建了多特征交叉融合注意力机制,增强了目标特征的可用信息;针对航拍图像中目标多尺度问题,设计了跨层级联多尺度特征融合金字塔,提高了跨尺度目标的检测准确率。实验结果表明,与现有的先进检测模型相比,所提算法的检测准确率有较大提升,算法平均准确率可达到81.0%,相比于原始网络提升了5.2%,特别是,在更小的目标类别“person”中达到了55.9%,提升了9.4%,进一步表明了所提改进算法对小目标检测的有用性。同时,所提算法的检测速率可以达56 frame/s,能够有效地实现实际复杂场景特殊目标的准确、快速检测,对特殊目标的识别具有一定的指导意义。 相似文献
6.
全卷积神经网络通过端到端的学习方式,实现了自动分割的目的.连续的卷积和池化操作会丢失一些像素,从而使感受野的大小受到限制,提出了一种基于空洞卷积的多尺度特征提取模块(Multi-scale Feature Extraction Block based on Dilate Convolution,MD),MD模块的输出包含了多尺度特征信息;增加损失函数中关于肿瘤区域的学习权重,解决类别不平衡问题;通过添加归一化层解决梯度消失的问题.多尺度特征提取的全卷积神经网络对完整肿瘤、核心区域、增强区域的分割的DSC评价分别为0.86、0.71、0.63,实验证明算法可以有效地保留肿瘤区域的细节信息和提高灰度相似区域的鉴别能力. 相似文献
7.
在研究红外点状移动目标特征的基础上,该文提出一种多尺度局部梯度强度测算的小目标检测算法。首先构造多尺度图像金字塔,并在多尺度下提出一种快速粗略的小目标检测方法;再利用目标本身与环绕背景之间的差异性,测算局部窗口内各个方向的灰度变化强度。然后根据这些测算结果获得最合适的响应。实验结果表明,在复杂多变的背景下,该方法具有较好的鲁棒性,在低信噪比下,有较为有效的检测性能。 相似文献
8.
水上交通场景环境复杂,通过普通光学摄像设备获取的水面图像,面临着视觉目标清晰度低、尺度多样化等问题,使得可见光视觉信号里中、小尺度目标检测相对困难。为服务于各类智慧海事应用,提出了一个旨在提高复杂水域背景下多尺度水上船舶目标检测性能的算法(multi-scale ship object detection,MS-SOD)。该算法基于当前计算机视觉技术中主流的单阶段目标检测模型框架,在其主干网络中嵌入卷积注意力模块,来优化船舶特征提取能力;在多尺度特征融合网络中引入富含细节信息的浅层特征,并使用跨阶段局部残差结构,来优化多尺度船舶特征的融合机制;同时,使用焦点损失函数,来优化模型的学习过程;并设计自适应锚框聚类算法优化先验锚框,以提高多尺度船舶目标检测能力。为验证提出算法的有效性和实效性,在构建较大规模水上船舶目标数据集的基础上,开展了广泛实验验证。结果表明:提出的算法在测试数据集上的检测准确度超过了各主流的对比方法;特别是对于大、中、小各尺度船舶目标的检测精度,相对于主流的YOLOv4算法,提出的算法分别提升了11.3%、6.0%和10.5%。 相似文献
9.
吴春光 《长春理工大学学报(自然科学版)》2011,34(3)
为提高海面目标检测性能,提出了基于多尺度分形特征的检测方法。该方法采用了模糊C均值聚类确定潜在目标点数,根据多尺度分形特征,利用支持向量机方法对像素点进行分类,实现目标检测。实验结果表明,该方法能更好地消除海空背景对目标检测的干扰,准确有效的检测出目标。 相似文献
10.
针对传统边缘检测算法抗噪性差、边缘连续度低、细节边缘冗余,对运动目标检测应用领域的适用性差等缺点,论文基于图像多尺度的思想,结合小尺度图像边缘信息准确,大尺度图像抗噪性强、边缘冗余度低的优点,提出一种基于非采样高斯差分金字塔的多尺度融合边缘检测算法。算法首先对图像进行非采样高斯金字塔分解得到多尺度图像,同时在分解过程实现基于高斯差分算子的边缘检测,得到多尺度边缘图像。最后采用多尺度图像边缘融合策略实现多尺度边缘融合。论文通过实验对算法的有效性进行验证:通过对边缘融合结果进行Abdou-Pratt品质因数分析,表明该算法抗噪性强,边缘定位准确;连续度分析结果表明该算法在降低边缘冗余度的同时保留了主要边缘,且边缘连续度较高;车辆检测实验结果表明基于该算法得到的车辆检测结果准确度较高。 相似文献
11.
一种新的红外弱小运动目标检测算法 总被引:4,自引:0,他引:4
为检测强杂波背景中的红外弱小运动目标,提出一种基于Power-Law检测器的目标检测新方法.利用图像中弱小目标经过时像素点灰度值有起伏变化这一特点,将其看作是一种弱瞬态信号,利用Power-Law检测器对瞬态信号良好的检测性能,实现对弱小运动目标的检测.仿真结果表明该算法能够可靠地检测出信杂比(SCR)大于1的弱小运动目标. 相似文献
12.
基于图像分析的裂缝自动检测识别一直是桥梁结构健康检测的热点问题之一。深度学习作为裂缝检测的重要解决方法,需要大量数据支持。公开数据集提供的小尺寸裂缝图像不足以解决超大尺寸细长裂缝图像的检测问题。提出一个基于特征金字塔深度学习网络的超大尺寸图像中细长裂缝的检测方法。通过对编码器提取的4个不同层次的特征图分别进行预测,网络能够实现对细小裂缝的高精度分割。试验使用120张大小为3 264×4 928像素的桥钢箱梁表面裂缝图像对特征金字塔网络进行训练、测试;并将获得的训练模型与通过双线性插值方法缩放图像至1 600×2 400像素和2 112×3 168像素两种规格生成的数据集训练后的模型进行对比。结果表明:该方法在对比测试中能够获得最高的裂缝检测交并比(IoU)为0.78,最低的Dice Loss为0.12。测试中,裂缝检测图像显示,缩放图像会导致部分裂缝信息的丢失,该方法能稳定地保留裂缝信息,并实现复杂背景下超大尺寸图像中细长裂缝的高精度自动检测。 相似文献
13.
针对现有的协同显著性检测算法在多显著目标复杂场景下表现不佳的问题,提出了一种基于高效通道注意力和特征融合的协同显著性检测算法。首先,检测算法利用预训练的深度卷积神经网络对场景进行多尺度特征的提取,结合边缘显著信息设计了显著性语义特征提取模块,以避免全卷积神经网络导致边缘信息的缺失;其次,通过内积基本原理得到组内图片间的关联性信息并根据其关联程度进行自适应加权,结合高效通道注意力层设计了协同特征提取算法;最后,为了将各级高层语义特征经过协同显著性特征提取之后的结果与浅层次的特征进行融合,并实现对预测结果进行多分支同步监督,设计了基于高效通道注意力的特征融合模块。通过对3个经典的数据集进行测试,并与6种现有的协同显著检测算法进行对比,结果表明本文所提算法提高了复杂场景中图像的协同显著性检测的精度以及边缘信息的丰富程度,并具有更优的协同显著性信息检测性能;通过消融实验进一步验证了所提设计算法各个模块的有效性和必要性。 相似文献
14.
A range spread target detection algorithm based on the normal distribution test is proposed. Based on the fact that the range spread target signal generally does not follow normal distribution, the range spread target detection problem is equivalent to the normal distribution test problem. Analysis show that the normal distribution test detector has the characteristic of constant false alarm rate. The performance of the proposed detector is analyzed. Numerical experimental results based on simulation and measured high range resolution profile data show that the proposed detector outperform the energy integration detector. 相似文献
15.
A detection method for SAR targets based on combining multiple features is proposed. The targets of interest are detected according to the physical properties, which reflect the true characteristics including scattering intensity, size and differences from the clutter. By analyzing these characteristics, the size and boundary changes are determined as effective features. The image background, natural clutter, man-made clutter are eliminated in sequence using the developed detection algorithm, which contains two layers, namely, the initial target detection layer and the potential target identification layer. Effective features ensure that a smaller number of features are used to meet the precision of the target detection, and the discrimination detection method ensure that the probability of false alarm is reduced gradually with the increased complexity of the feature extraction. Comparison with traditional target detectors, such as CFAR, PCA, etc. is performed in detail. Experimental results show the superiorities of the proposal in both accuracy and efficiency. 相似文献
16.
提出一种改进的多类别单阶检测器(SSD)算法. 借鉴特征金字塔算法的思想,将Conv4-3层的特征与Conv7、Conv3-3层的特征进行融合,同时增加融合后特征图每个位置对应的默认框数量. 在网络结构中增加裁剪-权重分配网络(SENet),对每层的特征通道进行权重分配,提升有用的特征权重并抑制无效的特征权重. 为了增强网络的泛化能力,对训练数据集进行一系列增强处理. 实验结果表明,改进后的算法在VOC数据集(07+12)上的检测效果良好,平均精度均值为80.4%,比改进前的算法提高了2.7%;在COCO数据集(2017)上的平均精度均值为42.5%,比改进前的算法提高了2.3%. 所提算法能够准确检测出不小于16×16像素的目标. 相似文献
17.
旋转框定位的多尺度再生物品目标检测算法 总被引:1,自引:0,他引:1
针对传统目标检测算法未考虑实际分拣场景目标物形态尺度的多样性,无法获取旋转角度信息的问题,提出基于YOLOv5的改进算法MR2-YOLOv5. 通过添加角度预测分支,引入环形平滑标签(CSL)角度分类方法,完成旋转角度精准检测. 增加目标检测层用于提升模型不同尺度检测能力,在主干网络末端利用Transformer注意力机制对各通道赋予不同的权重,强化特征提取. 利用主干网络提取到的不同层次特征图输入BiFPN网络结构中,开展多尺度特征融合. 实验结果表明,MR2-YOLOv5在自制数据集上的均值平均精度(mAP)为90.56%,较仅添加角度预测分支的YOLOv5s基础网络提升5.36%;对于遮挡、透明、变形等目标物,均可以识别类别和旋转角度,图像单帧检测时间为0.02~0.03 s,满足分拣场景对目标检测算法的性能需求. 相似文献
18.
遥感图像存在背景复杂、目标尺度差异大且密集分布等不足,为提高现有算法的检测效果提出联合多尺度与注意力机制的遥感图像目标检测算法. 改进空洞空间金字塔池化模块,增大不同尺寸图像的感受野;提出注意力模块用于学习特征图通道信息和空间位置信息,提升算法对复杂背景下遥感图像目标区域的特征提取能力;引入加权双向特征金字塔网络结构与主干网结合来增进多层次特征的融合;使用基于距离的非极大值抑制方法进行后处理,改善检测框易重叠的问题. 在DIOR和NWPUVHR-10数据集上的实验结果表明:所提算法的平均精度均值mAP分别达到71.6%和91.6%,相比于主流的YOLOv5s算法分别提升了2.9%和1.5%. 所提算法对复杂遥感图像取得了更好的检测效果. 相似文献