首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Available thermodynamic and phase diagram data have been critically assessed for all phases in the CrO-Cr2O3, CrO-Cr2O2-Al2O3, and CrO-Cr2O2-CaO systems from 298 K to above the liquidus temperatures and for oxygen partial pressures ranging from equilibrium with metallic Cr to equilibrium with air in the case of the first two systems and toP O 2 = 10−3 atm for the CrO-Cr2O3-CaO system. All reliable data have been simultaneously optimized to obtain one set of model equations for the Gibbs energy of the liquid slag and all solid phases as functions of composition and temperature. The modified quasichemical model was used for the slag. The models permit phase equilibria to be calculated for regions of composition, temperature, and oxygen potential where data are not available.  相似文献   

2.
Available thermodynamic and phase diagram data have been critically assessed for all phases in the CrO-Cr2O3-SiO2 and CrO-Cr2O3-SiO2-Al2O3 systems from 298 K to above the liquidus temperatures and for oxygen partial pressures ranging from equilibrium with metallic Cr to equilibrium with air. All reliable data have been simultaneously optimized to obtain one set of model equations for the Gibbs energy of the liquid slag and all solid phases as functions of composition and temperature. The modified quasi-chemical model was used for the slag. The models permit phase equilibria to be calculated for regions of composition, temperature, and oxygen potential where data are not available.  相似文献   

3.
The Na2O-B2O3 system is thermodynamically optimized by means of the CALPHAD method. A two-sublattice ionic solution model, (Na+1)P(O−2,BO3 −3,B4O7 −2,B3O4.5)Q, has been used to describe the liquid phase. All the solid phases were treated as stoichiometric compounds. A set of thermodynamic parameters, which can reproduce most experimental data of both phase diagram and thermodynamic properties, was obtained. Comparisons between the calculated results and experimental data are presented.  相似文献   

4.
The BaO-B2O3 pseudobinary system is assessed. A two-sublattice ionic solution model, (Ba2+) P (O2−, BO 3 3− , B4O 7 2− , B3O4.5) Q , is adopted to describe the liquid phase. All the solid phases are treated as stoichiometric compounds. A set of parameters consistent with most of the available experimental data on both phase diagram and thermodynamic properties is obtained by using CALPHAD technique. A comparison between the calculated results and experimental data as well as a previous assessment is presented.  相似文献   

5.
We applied our model to the enthalpy of mixing data of the binary systems Na2O-SiO2, Na2O-GeO2, Na2O-B2O3, Li2O-B2O3, CaO-B2O3, SrO-B2O3, and BaO-B2O3. The most stable composition in the liquid, that is where the enthalpy of mixing is most negative, is with a metal-oxygen ratio of 4 to 3, for monovalent metals (Na and Li) and 3 to 4 for divalent metals (Ba and Ca) in liquid silicates or borates. The same applies to the CaO-SiO2, CaO-Al2O3, PbO-B2O3, PbO-SiO2, ZnO-B2O3, and ZnO-SiO2 systems. The oxygen to metal ratio, its constant value in various types of systems, reflects and describes the structure of the liquid. Using the analyzed enthalpies of mixing data and the available phase diagrams, we calculated the enthalpies of formation of the various binary compounds. The results are in excellent agreement with data in the literature that were obtained from direct solid-solid calorimetry.  相似文献   

6.
Available thermodynamic and phase diagram data have been critically assessed for all phases in the CrO-Cr2O3, CrO-Cr2O2-Al2O3, and CrO-Cr2O2-CaO systems from 298 K to above the liquidus temperatures and for oxygen partial pressures ranging from equilibrium with metallic Cr to equilibrium with air in the case of the first two systems and toP O 2 = 10?3 atm for the CrO-Cr2O3-CaO system. All reliable data have been simultaneously optimized to obtain one set of model equations for the Gibbs energy of the liquid slag and all solid phases as functions of composition and temperature. The modified quasichemical model was used for the slag. The models permit phase equilibria to be calculated for regions of composition, temperature, and oxygen potential where data are not available.  相似文献   

7.
Phase relations in the systems SrO-Y2O3-CuO-O2 and CaO-Y2O3-CuO-O2 at 1173 K were estab-lished by equilibrating different compositions in flowing oxygen gas at a pressure of 1.01 × 105 Pa. The quenched samples were examined by optical microscopy, X-ray diffraction (XRD), energy dis-persive analysis of X-rays (EDAX), and electron spin resonance (ESR). In the system SrO-Y2O3-CuO-O2, except for the limited substitution of Y3+ for Sr2+ ions in the ternary oxide Sr14 Cu24O41, no new quaternary phase was found to be stable. The compositions corresponding to the solid solution Sr14-xYxCu24O41 and the compound SrCuO2+δ lie above the plane containing SrO, Y2O3, and CuO, displaced towards the oxygen apex. However, in the system CaO-Y2O3-CuO-O2 at 1173 K, all the condensed phases lie on the plane containing CaO, Y2O3, and CuO, and a new quaternary oxide YCa2Cu3O6.5 is present. The quaternary phase has a composition that lies at the center of the non-stoichiometric field of the analogous phase YBa2Cu3O7-δ in the BaO-Y2O3-CuO-O2 system. The com-pound YCa2Cu3O6.5 has the tetragonal structure and does not become superconducting at low temperature. Surprisingly, phase relations in the three systems CaO-Y2O3-CuO-O2, SrO-Y2O3-CuO-O2, and BaO-Y2O3-CuO-O2 are found to be quite different.  相似文献   

8.
Available thermodynamic and phase diagram data have been critically assessed for all phases in the CrO-Cr2O3-SiO2 and CrO-Cr2O3-SiO2-Al2O3 systems from 298 K to above the liquidus temperatures and for oxygen partial pressures ranging from equilibrium with metallic Cr to equilibrium with air. All reliable data have been simultaneously optimized to obtain one set of model equations for the Gibbs energy of the liquid slag and all solid phases as functions of composition and temperature. The modified quasi-chemical model was used for the slag. The models permit phase equilibria to be calculated for regions of composition, temperature, and oxygen potential where data are not available.  相似文献   

9.
We evaluated the six binary phase diagrams, B2O3-PbO, B2O3-SiO2, B2O3-ZnO, PbO-SiO2, PbO-ZnO, and SiO2-ZnO, to obtain a consistent picture for the quaternary system B2O3-PbO-SiO2-ZnO. We used all the available thermodynamic data: enthalpies of mixing, activity data, complete phase diagrams, and miscibility gaps. The agreement between the various sets of data is good. We also calculated the enthalpy of formation of the ternary compound 5PbO-B2O3-SiO2. ΔfH/R of 1/8 [5PbO-B2O3-SiO2] =-(2.104 ± 0.057) kK.  相似文献   

10.
The possibility of changing the thermodynamic properties of AlH3, alane, by fluorine anion substitution has been investigated by experimental measurements, ab initio calculations and thermodynamic modelling. No solid solution phases are observed experimentally. In accordance to this the calculations give a positive free energy of mixing for all compositions, showing that a mixed phase is not thermodynamically favourable. Thus fluorine anion substitution does not seem feasible for the alane system.  相似文献   

11.
The effects of K2O and Li2O-doping (0.5, 0.75 and 1.5 mol%) of Fe2O3/Cr2O3 system on its surface and the catalytic properties were investigated. Pure and differently doped solids were calcined in air at 400-600 °C. The formula of the un-doped calcined solid was 0.85Fe2O3:0.15Cr2O3. The techniques employed were TGA, DTA, XRD, N2 adsorption at −196 °C and catalytic oxidation of CO oxidation by O2 at 200-300 °C. The results revealed that DTA curves of pure mixed solids consisted of one endothermic peak and two exothermic peaks. Pure and doped mixed solids calcined at 400 °C are amorphous in nature and turned to α-Fe2O3 upon heating at 500 and 600 °C. K2O and Li2O doping conducted at 500 or 600 °C modified the degree of crystallinity and crystallite size of all phases present which consisted of a mixture of nanocrystalline α- and γ-Fe2O3 together with K2FeO4 and LiFe5O8 phases. However, the heavily Li2O-doped sample consisted only of LiFe5O8 phase. The specific surface area of the system investigated decreased to an extent proportional to the amount of K2O and Li2O added. On the other hand, the catalytic activity was found to increase by increasing the amount of K2O and Li2O added. The maximum increase in the catalytic activity, expressed as the reaction rate constant (k) measured at 200 °C, attained 30.8% and 26.5% for K2O and Li2O doping, respectively. The doping process did not modify the activation energy of the catalyzed reaction but rather increased the concentration of the active sites without changing their energetic nature.  相似文献   

12.
B2O3-doped ZnO-Bi2O3-Sb2O3-based varistors were fabricated by conventional ceramic technique. The microstructure and electrical properties were investigated by SEM, XRD and electrical measurements. With the addition of B2O3, the liquid-assisted sintering based on Bi2O3 was improved, and the Bi2O3-B2O3 glass and Zn3(BO3)2 phase were formed on the grain boundaries. The doping of B2O3 markedly improved the varistor performance of the ZnO-Bi2O3-Sb2O3-based varistors. The nonlinear coefficient of the sample with 3.5 mol% B2O3 sintered at 1100 °C reached 56 and the leakage current was only 0.3 μA.  相似文献   

13.
Alumina-titanium diboride nanocomposite (Al2O3-TiB2) was produced using mixtures of titanium dioxide, acid boric and pure aluminum as raw materials via mechanochemical process. The phase transformation and structural characterization during mechanochemical process were utilized by X-ray diffractometry (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric analyses (TG-DTA) techniques. A thermodynamic appraisal showed that the reaction between TiO2, B2O3 and Al is highly exothermic and should be self-sustaining. XRD analyses exhibited that the Al2O3-TiB2 nanocomposite was formed after 1.5 h milling time. The results indicate that increasing milling time up to 40 h had no significant effect other than refining the crystallite size.  相似文献   

14.
15.
16.
Ceramic compositions based on (aY2O3 + bCeO2)-0.4YCr0.5Mn0.5O3 (a + b = 0.6) were prepared by conventional solid state reaction at 1200 °C, and sintered under air atmosphere at 1600 °C. For 0 ≤ a < 0.6, XRD patterns have shown that the major phases presented in the calcined powders are Y2O3, CeO2 and orthorhombic perovskite YCr0.5Mn0.5O3 phase, respectively. SEM and EDAX observations confirm the YCr0.5Mn0.5O3 phases mostly exist at the grain, whereas the Y2O3 and CeO2 phases mainly exist at the grain boundaries. Complex impedance analysis shows that, for 0 < a ≤ 0.6, single semicircular arc whose shape does not show any change with temperature. Nevertheless, for a = 0, two overlapping semicircular arcs are observed at and above 300 °C. The grain boundary properties exhibit thermistor parameters with a negative temperature coefficient characteristic. The relaxation behavior and conduction for the grain boundary could be due to a space-charge relaxation mechanism and oxygen vacancies, respectively.  相似文献   

17.
Coloured Al2O3/ZrO2 multilayers have been deposited onto WC-Co based inserts by a CVD process. Through physical as well as optical analysis of such multilayers, colour is believed to originate from interference. The coatings are obtained with good process reproducibility. It was found that the ZrO2 process used in the multilayer, with ZrCl4 as the only metal chloride precursor, results in a mixture of tetragonal and monoclinic ZrO2 phases. However by adding a relatively small amount of AlCl3 during such a process results in ZrO2 layers being composed of predominantly tetragonal ZrO2 phase. Corresponding multilayers seem to have a more fine grained and smoother morphology whereas multilayers containing monoclinic ZrO2 phase seem to be less perfect with existence of larger grains of ZrO2 which are believed to scatter light and alter the reflectance of such a multilayer. In addition to this, such multilayers were found to be free of or with greatly reduced amount of thermal cracks, normally present in pure CVD grown Al2O3 layers.It is believed that, in the studied Al2O3/ZrO2 multilayers, the observed tetragonal ZrO2 phase is the result of a size effect, where small enough ZrO2 crystallites energetically favor the tetragonal phase. However as the ZrO2 crystallite size distribution is shifted to larger sizes it is believed that a mixture of crystallites with both stable and metastable tetragonal phases as well as a stable monoclinic phase is obtained. The proposed metastable tetragonal ZrO2 phase may in fact explain the absence of thermal cracks in such multilayers through a transformation toughening mechanism, well known in ZrO2 based ceramics.  相似文献   

18.
以La2O3粉、Al粉、CuO粉为反应物原料、纯铜为基体,采用原位合成技术和近熔点铸造法制备颗粒增强Cu基复合材料,研究La2O3对Al-CuO体系制备的Cu基复合材料组织及性能的影响。结果表明:添加La2O3可获得纳米Al2O3颗粒,且弥散分布于Cu基体中,制备的材料组织更加细小、均匀,其材料的电导率及摩擦磨损性能明显提高。当添加0.6%wtLa2O3,复合材料的电导率达到90.2%IACS,磨损量达到最小,相比未添加La2O3,其导电率提高10.1%,磨损量减小36.6%。  相似文献   

19.
ZnO-containing slags are common in pyrometallurgical processing of the base metals and steel. This caused the interest to the thermodynamics of the ZnO-SiO2 system. A complete literature survey, critical evaluation of the available experimental data and a thermodynamic optimization of the phase equilibria and thermodynamic properties of the system ZnO-SiO2 at 1.013×105 Pa are presented. The molten oxide was described as an associate solution. The properties of liquid were reassessed and enthalpy term of the Gibbs energy of solid Zn2SiO4 was re-fitted to be compatible with the new data in the willemite primary phase field. The thermodynamic data set agrees well with the recent experimental observations. It can be used for predicting, e.g., the thermodynamic properties and the domains of the phase diagram, like critical point of the liquid miscibility gap, with a better accuracy than using the previous assessments. A set of optimized model parameters were obtained, reproducing the reliable thermodynamic and phase equilibrium data within their experimental errors from 298 K to liquidus temperatures, over the entire composition range. The created database can be used in a Gibbs energy minimization software to calculate the thermodynamic properties and the phase diagram sections of interest.  相似文献   

20.
A literature survey and recent results on phase relationships in the quasi-ternary systems RE2O3-Al2O3-SiO2 are given. The investigated systems exhibit extended ternary solid solutions, RE9.33+2x(Si1_xAlxO4)6O2 (withx up to ~0.33) and/or RE4Al2(1_X)Si2xO9+x (withx up to ~0.3), which are based on the quasi-binary phases RE9.33(SiO4)6O2 and RE4A12O9, respectively. The former is encountered only in systems with laige RE3+ ions (e.g., La3+), whereas the latter is found in systems with small RE3+ ions (e.g., Yb3+); in systems with medium-sized KE3+ ions (e.g., Gd3+) both types exist Quasi-ternary compounds are known only in the La, Ce, and Sc systems. Severe discrepancies in reported ternary eutectic temperatures led to a need for their accurate redeteimination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号