首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
高增益K波段MMIC低噪声放大器   总被引:4,自引:1,他引:4  
王闯  钱蓉  孙晓玮 《半导体学报》2006,27(7):1285-1289
基于0.25μm PHEMT工艺,给出了两个高增益K波段低噪声放大器.放大器设计中采用了三级级联增加栅宽的电路结构,通过前级源极反馈电感的恰当选取获得较高的增益和较低的噪声;采用直流偏置上加阻容网络,用来消除低频增益和振荡;三级电路通过电阻共用一组正负电源,使用方便,且电路性能较好,输入输出驻波比小于2.0;功率增益达24dB;噪声系数小于3.5dB.两个放大器都有较高的动态范围和较小的面积,放大器1dB压缩点输出功率大于15dBm;芯片尺寸为1mm×2mm×0.1mm.该放大器可以应用在24GHz汽车雷达前端和26.5GHz本地多点通信系统中.  相似文献   

2.
采用分布式放大器设计原理,基于GaAs PHEMT低噪声工艺技术,研制了一款超宽带低噪声放大器单片电路。该款放大器选用分布式拓扑结构,由五级电路构成,为了进一步提高分布式放大器的增益,在每一级又采用了两个场效应晶体管(FET)串联结构。放大器采用了自偏压单电源供电,因为每级有两个FET串联,自偏压电路更为复杂,通过多个电阻分压的方式确定了每个FET的工作点。测试结果表明,该放大器在频率4~20 GHz内,增益大于14 dB,噪声系数小于3.0 dB,增益平坦度小于±1.0 dB,输入驻波比小于1.5∶1,输出驻波比小于1.8∶1,1 dB压缩点输出功率大于10 dBm。放大器的工作电压为8 V,电流约为50 mA,芯片面积为2.0 mm×2.0 mm。  相似文献   

3.
闵丹  马晓华  刘果果  王语晨 《半导体技术》2019,44(8):590-594,622
为满足宽带系统中低噪声放大器(LNA)宽带的要求,采用0.15μm GaAs赝配高电子迁移率晶体管(PHEMT)工艺,设计了两款1 MHz^40 GHz的超宽带LNA,分别采用均匀分布式放大器结构及渐变分布式放大器结构,电路面积分别为1.8 mm×0.85 mm和1.8 mm×0.8 mm。电磁场仿真结果表明,1 MHz^40 GHz频率范围内,均匀分布式LNA增益为15.3 dB,增益平坦度为2 dB,噪声系数小于5.1 dB;渐变分布式LNA增益为14.16 dB,增益平坦度为1.74 dB,噪声系数小于3.9 dB。渐变分布式LNA较均匀分布式LNA,显著地改善了增益平坦度、噪声性能和群延时特性。  相似文献   

4.
采用混合集成电路工艺,设计了一款小尺寸限幅低噪声放大器(LNA)。优化了限幅电路设计,明显缩小了电路体积。低噪声放大器采用负反馈结构,以改善增益平坦度。采用平衡式结构,提高限幅器的功率容量和放大器的1 dB压缩点输出功率(P-1 dB)。设计制作了Lange电桥,作为平衡式限幅放大器的输出电桥。该放大器工作电压5 V,电流151 mA,测试结果显示,在频带2.7~3.0 GHz内,噪声系数小于1.5 dB,小信号功率增益大于36 dB,增益平坦度小于0.6 dB,输入输出驻波比小于1.3,P-1 dB大于13 dBm。该限幅放大器能够承受脉冲功率300 W、脉宽300μs和占空比为30%的信号,外形尺寸为27 mm×18 mm×5 mm。  相似文献   

5.
研制了一款毫米波(26~40 GHz)平衡式单片放大器芯片。放大器基于0. 15μm GaAs pHEMT工艺,实现了毫米波全频段(26~40 GHz)增益放大。采用Lange桥平衡结构,使放大器较于单边放大器有更好的输入输出驻波比,更大的1 dB增益压缩输出功率。设计时结合pHEM T晶体管小信号和大信号模型,采用自偏和RLC并联负反馈结构,在减小芯片面积的同时提高了电路的稳定性。放大器芯片尺寸仅1. 6 mm×1. 6 mm,在工作频率26~40 GHz内,测试结果表明:输入、输出驻波比小于1. 5,增益在11 dB附近,平坦度在±0. 5 dB,1 dB增益压缩输出功率大于11 dBm。测试结果验证了设计的正确性。  相似文献   

6.
基于0.25 μm GaAs赝高电子迁移晶体管(pHEMT)工艺,研制了一种1.0~2.4 GHz的放大衰减多功能芯片,该芯片具有低噪声、高线性度和增益可数控调节等特点。电路由第一级低噪声放大器、4位数控衰减器、第二级低噪声放大器依次级联构成,同时在片上集成了TTL驱动电路。为获得较大的增益和良好的线性度,两级低噪声放大器均采用共源共栅结构(Cascode)。测试结果表明,在1.0~2.4 GHz频带范围内,该芯片基态小信号增益约为36 dB,噪声系数小于1.8 dB,输出1 dB压缩点功率大于16 dBm,增益调节范围为15 dB,调节步进1 dB,衰减RMS误差小于0.3 dB,输入输出电压驻波比小于1.5。其中放大器采用单电源+5 V供电,静态电流小于110 mA,TTL驱动电路采用-5 V供电,静态功耗小于3 mA。整个芯片的尺寸为3.5 mm×1.5 mm×0.1 mm。  相似文献   

7.
S波段低噪声放大器设计   总被引:1,自引:0,他引:1  
首先分析了低噪声放大电路的稳定性,功率增益及噪声系数的影响因素及改进方法;然后设计了一个中心频率为2.45 GHz,工作带宽为100MHz的S波段低噪声放大器.仿真结果表明,该放大器的噪声系数小于1 dB,功率增益大于28 dB,增益平坦度小于1 dB,输入/输出驻波比小于2:1.通过传统的电路板制作工艺实际制作了放大器电路,测试结果和仿真结果较一致.  相似文献   

8.
基于GaAs赝高电子迁移率晶体管(PHEMT)工艺,研制了一种5~ 12 GHz的收发一体多功能芯片(T/R MFC),其具有噪声低、增益高和中等功率等特点.电路由低噪声放大器和多个单刀双掷(SPDT)开关构成.为了获得较低的噪声系数和较大的增益,低噪声放大器采用自偏置三级级联拓扑结构;为了获得较高的隔离度和较低的插入损耗,SPDT开关采用串并联结构.测试结果表明,在5~ 12 GHz频段内,收发一体多功能芯片的小信号增益大于26 dB,噪声系数小于4 dB,输入/输出电压驻波比小于2.0,1 dB压缩点输出功率大于15 dBm.其中,放大器为单电源5V供电,静态电流小于120 mA;开关控制电压为-5 V/0 V.芯片尺寸为2.65 mm×2.0 mm.  相似文献   

9.
利用负反馈放大器设计原理,采用GaAs PHEMT工艺技术,设计制作了一种微波宽带GaAs PHEMT低噪声放大器芯片,并给出了详细测试曲线.该放大器由两级组成,采用负反馈结构,工作频率0.8~8.5 GHz,整个带内功率增益19 dB,噪声系数1.55 dB,增益平坦度小于±0.7 dB,输入驻波比1.6,输出驻波比1.8,1 dB压缩点输出功率大于10 dBm,芯片内部集成偏置电路,单电源 5 V供电,芯片具有良好的温度特性.该芯片面积为2.5 mm × 1.2 mm.  相似文献   

10.
Ka波段单片低噪声放大器   总被引:1,自引:0,他引:1       下载免费PDF全文
杨浩  黄华  郝明丽  陈立强  张海英   《电子器件》2007,30(4):1242-1245
利用0.25 μm GaAs PHEMT工艺设计并制作了一种Ka波段低噪声放大器芯片.提出了适用于低噪声放大器的PHEMT器件特征.电路采用四级级联结构.利用微带电路实现输入、输出和级间匹配.通过对电路增益、噪声系数和驻波比等指标进行多目标优化,确定了器件参数.该放大器测试结果为:26.5~36 GHz频段内增益大于20 dB;多数测试点噪声系数小于3 dB,其中34 GHz频点噪声仅为1.94 dB;芯片面积2.88 mm×1 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号