首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
段宝兴  张波  李肇基 《半导体学报》2006,27(10):1814-1817
提出了一种具有折叠硅表面SOI-LDMOS(FSOI-LDMOS)新结构.它是将硅表面从沟道到漏端的导电层刻蚀成相互排列的折叠状,且将栅电极在较薄的场氧化层上一直扩展到漏端.由于扩展栅电极的电场调制作用使FSOI-LDMOS在比一般SOI-LDMOS浓度高的漂移区表面,包括折叠硅槽侧面形成多数载流子积累,积累的多数载流子大大降低了漂移区的导通电阻.并且沟道反型层浓度基于折叠的硅表面而双倍增加,沟道导通电阻降低.通过三维仿真软件ISE分析,这种结构可以在低于40V左右的击穿电压下,获得超低的比导通电阻.  相似文献   

2.
提出了一种带氧化槽的双栅体硅LDMOS结构(DGT LDMOS).在漂移区中引入一个氧化槽,在该槽上形成埋栅,同时形成一个槽栅.首先,双栅形成双导电沟道,减小了比导通电阻;其次,氧化槽折叠了漂移区,这不仅调制了电场的分布,而且提高了漂移区的优化浓度,有效提高了击穿电压,降低了比导通电阻.采用二维数值仿真软件MEDICI,对器件参数进行仿真和优化设计.结果表明,相对于普通体硅LDMOS(SG LDMOS),该结构的比导通电阻下降了56.9%,击穿电压提高了82.4%.在相同尺寸和击穿电压下,相对于单槽栅体硅LDMOS(SGT LDMOS),DGT LDMOS的比导通电阻下降了35.4%.  相似文献   

3.
为了降低绝缘体上硅(SOI)功率器件的比导通电阻,同时提高击穿电压,利用场板(FP)技术,提出了一种具有L型栅极场板的双槽双栅SOI器件新结构.在双槽结构的基础上,在氧化槽中形成第二栅极,并延伸形成L型栅极场板.漂移区引入的氧化槽折叠了漂移区长度,提高了击穿电压;对称的双栅结构形成双导电沟道,加宽了电流纵向传输面积,使比导通电阻显著降低;L型场板对漂移区电场进行重塑,使漂移区浓度大幅度增加,比导通电阻进一步降低.仿真结果表明:在保证最高优值条件下,相比传统SOI结构,器件尺寸相同时,新结构的击穿电压提高了123%,比导通电阻降低了32%;击穿电压相同时,新结构的比导通电阻降低了87.5%;相比双槽SOI结构,器件尺寸相同时,新结构不仅保持了双槽结构的高压特性,而且比导通电阻降低了46%.  相似文献   

4.
提出了一种新型D-RESURF埋栅SOI LDMOS (EGDR-SOI LDMOS)结构,其栅电极位于P-body区的下面,可以在扩展的埋栅电极处形成多数载流子的积累层;同时,采用Double- RESURF技术,在漂移区中引入两区的P降场层,有效降低了器件的比导通电阻,并提高了器件的击穿电压.采用二维数值仿真软件MEDICI,对器件的扩展栅电极、降场层进行了优化设计.结果表明,相对于普通SOI LDMOS,该结构的比导通电阻下降了78%,击穿电压上升了22%.  相似文献   

5.
提出了一种具有降场电极U形漂移区SOI-LDMOS,借助2D泊松方程对其场分布进行解析分析和数值分析,结果证明该结构在与RESURF结构相同的耐压下,具有器件长度小,漂移区浓度高,导通电阻小的特点.这表明降场电极是一种缓和漂移区掺杂浓度和耐压之间矛盾的有效方法.该结构是一种器件耐压与导通电阻优化的新途径.  相似文献   

6.
提出了一种新型D-RESURF埋栅SOILDMOS(EGDR-SOILDMOS)结构,其栅电极位于P-body区的下面,可以在扩展的埋栅电极处形成多数载流子的积累层;同时,采用DoubleRESURF技术,在漂移区中引入两区的P降场层,有效降低了器件的比导通电阻,并提高了器件的击穿电压。采用二维数值仿真软件MEDICI,对器件的扩展栅电极、降场层进行了优化设计。结果表明,相对于普通SOILDMOS,该结构的比导通电阻下降了78%,击穿电压上升了22%。  相似文献   

7.
提出了一种具有超低比导通电阻的L型栅漏极LDMOS器件。该器件在两个氧化槽中分别制作L型多晶硅槽栅。漏极n型重掺杂区向下延伸,与衬底表面重掺杂的n型埋层相接形成L型漏极。L型栅极不仅可以降低导通电阻,还具有纵向栅场板的特性,可有效改善表面电场分布,提高击穿电压。L型漏极为电流提供了低阻通路,降低了导通电阻。另外,氧化槽折叠漂移区使得在相同耐压下元胞尺寸及导通电阻减小。二维数值模拟软件分析表明,在漂移区长度为0.9 μm时,器件耐压达到83 V,比导通电阻仅为0.13 mΩ·cm2。  相似文献   

8.
提出一种用于智能功率集成电路的基于绝缘体上硅(SOI)的部分槽栅横向双扩散MOS晶体管(PTG-LDMOST)。PTG-LDMOST由传统的平面沟道变为垂直沟道,提高了器件击穿电压与导通电阻之间的折衷。垂直沟道将开态电流由器件的表面引向体内降低了导通电阻,而且关态的时候耗尽的JFET区参与耐压,提高单位漂移区长度击穿电压。仿真结果表明:对于相同的10微米漂移区长度,新结构的击穿电压从常规结构的111V增大到192V,增长率为73%。  相似文献   

9.
提出一种具有埋层低掺杂漏(BLD)SOI高压器件新结构。其机理是埋层附加电场调制耐压层电场,使漂移区电荷共享效应增强,降低沟道边缘电场,在漂移区中部产生新的电场峰。埋层电中性作用增加漂移区优化掺杂浓度,导通电阻降低;低掺杂漏区在漏极附近形成缓冲层,改善漏极击穿特性。借助二维半导体仿真器MEDICI,研究漂移区浓度和厚度对击穿电压的影响,获得改善击穿电压和导通电阻折中关系的途径。在器件参数优化理论的指导下,成功研制了700V的SOI高压器件。结果表明:BLD SOI结构击穿电压由均匀漂移区器件的204V提高到275V,比导通电阻下降25%。  相似文献   

10.
提出与CMOS工艺兼容的薄型双漂移区(TD)高压器件新结构.通过表面注入掺杂浓度较高的N-薄层,形成不同电阻率的双漂移区结构,改变漂移区电流线分布,降低导通电阻;沟道区下方采用P离子注入埋层来减小沟道区等位线曲率,在表面引入新的电场峰,改善横向表面电场分布,提高器件击穿电压.结果表明:TD LDMOS较常规结构击穿电压提高16%,导通电阻下降31%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号