首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Charcoal-supported nickel hydroxides were investigated in the water-gas shift reaction and found to exhibit high catalytic activity. Nickel hydroxide structures of the type *-Ni(OH)2·xH2O are supposed to be the most probable bearers of the catalytic activity. A redox Ni2+Ni3+ transition is accomplished in these catalysts.  相似文献   

2.
Au/CeZrO4 catalysts have shown very low temperature activity for the WGS reaction. Characterisation of the as-prepared catalysts shows Au is present primarily as isolated Au3+ atoms. It has been found that a higher proportion of Au3+ present in the as-prepared catalyst leads to a higher WGS activity, although under reaction conditions reduction to Au0 is observed. Use of TPR and iso-thermal H2O re-oxidation has shown that Au reacts with H2O at lower temperatures than an equivalent Pt/CeZrO4 catalyst, indicating that H2O activation is key in the onset of low temperature WGS activity.  相似文献   

3.
The stability of surface formates generated by reaction of bridging OH groups with CO is an important first criterion supporting the idea that the rate limiting step of WGS involves formate decomposition. The second important factor is that, in the presence of water, shown directly by the measurements obtained during this steady state isotope switching study, the forward decomposition of surface formates to CO2 and H2 is strongly auto-catalyzed by H2O, in agreement with the findings of Shido and Iwasawa. Based on a normal kinetic isotope effect previously observed with H2O:D2O switching and the response of surface formate coverages to the WGS rate under steady state conditions when a high H2O:CO ratio is employed, the conclusion is drawn that a surface formate mechanism is likely operating for the low temperature water gas shift reaction.  相似文献   

4.
Preferential CO oxidation reaction has been carried out at a gas hourly space velocity of 46,129 h?1 over supported Pt catalysts prepared by an incipient wetness impregnation method. Al2O3, MgO-Al2O3 (MgO=30 wt% and 70 wt%) and MgO were employed as supports for the target reaction. 1 wt% Pt/Al2O3 catalyst exhibited very high performance (X CO >90% at 175 °C for 100 h) in the reformate gases containing CO2 under severe conditions. This result is mainly due to the highest Pt dispersion, easier reducibility of PtO x , and easier electron transfer of metallic Pt. In addition, 1 wt% Pt/Al2O3 catalyst was also tested in the reformate gases with both CO2 and H2O to evaluate under realistic condition.  相似文献   

5.
Ethylene decomposition was performed over supported Pt catalysts to fabricate composites of Pt metal nanoparticles and carbon nanotubes (CNTs). All supported Pt catalysts (Pt/carbon black, Pt/CNT, Pt/MgO, Pt/Al2O3 and Pt/SiO2) showed catalytic activity for ethylene decomposition at 973 K to form CNTs. Pt metal particles were found at tips of CNTs. These results indicate that Pt metal particles have catalytic activity for growth of CNTs through hydrocarbon decomposition. A broad range (5-50 nm) of CNT diameters were formed from the use of supported Pt metal catalysts although Pt metal particles in the catalysts before ethylene decomposition were relatively uniform in size (2-5 nm). These results imply that Pt metal particles in the catalysts aggregated during ethylene decomposition at 973 K. Aggregation of Pt metal particles in catalysts during ethylene decomposition could be suppressed by covering catalysts with silica layers that were a few nanometers thick. Silica-coated Pt catalysts showed high activity for ethylene decomposition to form CNTs with uniform diameters (8-10 nm) despite the uniform coverage of Pt metal particles with silica layers.  相似文献   

6.
We report the kinetic parameters for the water–gas shift (WGS) reaction on Pt catalysts supported on ceria and alumina under fuel reformer conditions for fuel cell applications (6.8% CO, 8.5% CO2, 22% H2O, 37.3% H2, and 25.4% Ar) at a total pressure of 1 atm and in the temperature range of 180–345 °C. When ceria was used as a support, the turnover rate (TOR) for WGS was 30 times that on alumina supported Pt catalysts. The overall WGS reaction rate (r) on Pt/alumina catalysts as a function of the forward rate (rf) was found to be: r = rf(1 − β), where rf = kf[CO]0.1[H2O]1.0[CO2]−0.1[H2]−0.5, kf is the forward rate constant, β = ([CO2][H2])/(Keq[CO][H2O]) is the approach to equilibrium, and Keq is the equilibrium constant for the WGS reaction. The negative apparent reaction orders indicate inhibition of the forward rate by CO2 and H2. The surface is saturated with CO on Pt under reaction conditions as confirmed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The small positive apparent reaction order for CO, in concert with the negative order for H2 and the high CO coverage is explained by a decrease in the heat of adsorption as the CO coverage increases. Kinetic models based on redox-type mechanisms can explain the observed reaction kinetics and can qualitatively predict the changes in CO coverage observed in the DRIFTS study.  相似文献   

7.
Pt, Ir, Pt-Ir and Pt-Ni bimetallic catalysts supported on NaY- and HY-zeolite were examined as a catalyst for producing gasoline from n-decane via simultaneous reforming and cracking. The catalysts were prepared by calcining and reducing metal-ion-exchanged Y-zeolite with O2 and H2 at 300°C., respectively. Thus prepared catalysts were characterized by hydrogen chemisorption and temperature programmed desorption of ammonia. Pt-Ni/NaY and Pt-Ir/NaY bimetallic catalysts offered the improved activity maintenance compared to Pt/NaY monometallic catalyst. The catalysts supported on HY-zeolite showed higher selectivity toward C5–C7 and skeletal isomers of C5–C7- and C8–C10 than those of the catalysts supported on NaY-zeolite, which is a desired characteristic for increasing octane value of gasoline these days. However, deactivation with reaction time was much more pronounced on HY-zeolite-supported catalyst. When the catalyst was prcsulfided with H,S, the stability with time on stream was enhanced and the selectivity was quite different from that of the catalyst before presulfiding. The acidity of Y-zeolite and presulfiding of catalyst greatly influenced the activny, selectivity and stability of Pt, Ir, Pt-Ir and Pt-Ni bimetallic catalysts supported on Y-zeolite in n-decane reforming reaction.  相似文献   

8.
More than 130 Pt and Pd bimetallic catalysts were screened for hydrogen production by aqueous-phase reforming (APR) of ethylene glycol solutions using a high-throughput reactor. Promising catalysts were characterized by CO chemisorption and tested further in a fixed bed reactor. Bimetallic PtNi, PtCo, PtFe and PdFe catalysts were significantly more active per gram of catalyst and had higher turnover frequencies for hydrogen production (TOFH2) than monometallic Pt and Pd catalysts. The PtNi/Al2O3 and PtCo/Al2O3 catalysts, with Pt to Co or Ni atomic ratios ranging from 1:1 to 1:9, had TOFH2 values (based on CO chemisorption uptake) equal to 2.8–5.2 min−1 at 483 K for APR of ethylene glycol solutions, compared to 1.9 min−1 for Pt/Al2O3 under similar reaction conditions. A Pt1Fe9/Al2O3 catalyst showed TOFH2 values of 0.3–4.3 min−1 at 453–483 K, about three times higher than Pt/Al2O3 under identical reaction conditions. A Pd1Fe9/Al2O3 catalyst had values of TOFH2 equal to 1.4 and 4.3 min−1 at temperatures of 453 and 483 K, respectively, and these values are 39–46 times higher than Pd/Al2O3 at the same reaction conditions. Catalysts consisting of Pd supported on high surface area Fe2O3 (Nanocat) showed the highest turnover frequencies for H2 production among those catalysts tested, with values of TOFH2 equal to 14.6, 39.1 and 60.1 min−1 at temperatures of 453, 483 and 498 K, respectively. These results suggest that the activity of Pt-based catalysts for APR can be increased by alloying Pt with a metal (Ni or Co) that decreases the strengths with which CO and hydrogen interact with the surface (because these species inhibit the reaction), thereby increasing the fraction of catalytic sites available for reaction with ethylene glycol. The activity of Pd-based catalysts for APR can be increased by adding a water-gas shift promoter (e.g. Fe2O3).  相似文献   

9.
Supported Pt, Pd, and Au catalysts were evaluated in the aqueous-phase oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) at 295 K and high pH in a semibatch reactor. The intermediate reaction product 5-hydroxymethyl-2-furancarboxylic acid (HFCA) was formed in high yield over Au/C and Au/TiO2 at 690 kPa O2, 0.15 M HMF and 0.3 M NaOH, but did not continue to react substantially to FDCA at the specified O2 pressure and base concentration. In contrast, the final reaction product FDCA was formed over Pt/C and Pd/C under identical conditions. The initial turnover frequency of HMF conversion was an order of magnitude greater on Au catalysts compared to either Pt or Pd. Increasing the O2 pressure and NaOH concentration facilitated the conversion of HFCA to FDCA over the supported Au. The significant influence of base concentration on the product distribution indicates an important role of OH in the activation, oxidation and degradation of HMF.  相似文献   

10.
Pt–Ru, Pt and Ru catalysts supported on zirconia were prepared by impregnation method and were tested in se-lective oxidation of methylamine (MA) in aqueous media. Among three catalysts, Ru/ZrO2 was more active than Pt/ZrO2 while Pt–Ru/ZrO2 demonstrated the best catalytic activity due to the fact that Pt addition efficiently pro-moted the dispersion of active species in bimetallic catalyst. Therefore, the~100%TOC conversion and N2 selec-tivity were achieved over Pt–Ru/ZrO2, Pt/ZrO2 and Ru/ZrO2 catalysts at 190, 220 and 250 °C, respectively.  相似文献   

11.
Pt-CS负载物催化硅氢加成反应的研究   总被引:2,自引:1,他引:2  
通过壳聚糖负载铂制备了一种硅氢加成反应用多相催化剂(Pt-CS);并采用聚醚F-6与低含氢硅油的硅氢加成反应体系,比较了不同铂含量的Pt-CS负载物与氯铂酸异丙醇溶液的催化活性。结果表明,当Pt-CS负载物中的铂含量与均相催化剂相当时,其催化活性不如均相催化剂;Pt-CS负载物中的铂含量约为均相催化剂的12倍时,反应达到平衡所需的时间比采用均相催化剂时缩短了1 h;其催化活性与均相催化剂接近,重复使用13次后,催化活性没有明显下降。  相似文献   

12.
Alumina-supported platinum catalysts modified by vanadium were synthesised and tested for the complete oxidation of naphthalene. The catalysts were characterised by BET, pulsed CO chemisorption, powder X-ray diffraction, laser Raman spectroscopy and temperature-programmed reduction. Whilst BET and CO chemisorption results showed that the addition of vanadium modified both the textural properties of the support and the distribution of Pt, XRD and TPR data suggested the presence of V2O5 on catalysts with higher V loadings. TPR data showed that the concentration of V2O5 and possibly some other vanadium species increased as the V loading increased. Only 0.5%V was found to promote the activity of the 0.5%Pt/γ-Al2O3 catalyst. The activity enhancement has been related to the presence of a more easily reducible vanadium species coupled with the enhanced number of surface Pt sites. On the other hand, the reduced activity demonstrated by catalysts with higher vanadium content (1 – 12%) has been attributed to the presence of crystalline V2O5.  相似文献   

13.
In ammonia and hydrogen production, methanol formation takes place mainly at the low-temperature (second) WGS stage, where the gas composition, catalysts, and operating conditions are similar to those in methanol synthesis. The methanol formation reaction consumes hydrogen, an expensive gas, and causes a number of technological and environmental problems. This raises the problem of reducing the methanol formation rate. To do this, it is necessary to analyze the kinetics, thermodynamics, and technological features of methanol formation at the low-temperature shift stage. Here, we report the equilibrium methanol concentrations calculated for CO conversion under near-industrial conditions. Systematizing the relevant experimental data available from the literature, we demonstrate how methanol formation depends on WGS conditions. The methanol formation rate can be reduced by lowering the CO concentration in the feed gas and employing low-methanol catalysts. Another favorable factor for methanol reduction is the aging of the catalyst during its operation.  相似文献   

14.
Mesoporous titania with high surface area and uniform pore size distribution was synthesized using surfactant templating method through a neutral [C13(EO)6–Ti(OC3H7)4] assembly pathway. The different gold content (1–5 wt.%) was supported on the mesoporous titania by deposition–precipitation (DP) method. The catalysts were characterized by X-ray diffraction, TEM, SEM, N2 adsorption analysis and TPR. The catalytic activity of gold supported mesoporous titania was evaluated for the first time in water–gas shift reaction (WGSR). The influence of gold content and particle size on the catalytic performance was investigated. The catalytic activity was tested at a wide temperature range (140–300 °C) and at different space velocities and H2O/CO ratios. It is clearly revealed that the mesoporous titania is of much interest as potential support for gold-based catalyst. The gold/mesoporous titania catalytic system is found to be effective catalyst for WGSR.  相似文献   

15.
Mesoporous ZrO2 with high surface area and uniform pore size distribution, synthesized by surfactant templating through a neutral [C13(EO)6–Zr(OC3H7)4] assembly pathway, was used as a support of gold catalysts prepared by deposition–precipitation method. The supports and the catalysts were characterized by powder X-ray diffraction, scanning and transmission electron microscopy, N2 adsorption analysis, temperature programmed reduction and desorption. The catalytic activity of gold supported on mesoporous zirconia was evaluated in water–gas shift (WGS) reaction at wide temperature range (140–300 °C) and at different space velocities and H2O/CO ratios. The catalytic behaviour and the reasons for а reversible deactivation of Au/mesoporous zirconia catalysts were studied. The influence of gold content and particle size on the catalytic performance was investigated. The WGS activity of the new Au/mesoporous zirconia catalyst was compared to the reference Au/TiO2 type A (World Gold Council), revealing significantly higher catalytic activity of Au/mesoporous zirconia catalyst. It is found that the mesoporous zirconia is a very efficient support of gold-based catalyst for the WGS reaction.  相似文献   

16.
Preparation of size-controlled Pt catalysts supported on alumina   总被引:1,自引:0,他引:1  
It was found that Pt particles on Al2O3-supported Pt catalysts prepared using Pt complex nanoparticles formed in a water-in-oil microemulsion became very small and uniform compared to those prepared using reduced Pt metal nanoparticles or by an impregnation method. Moreover, the catalytic activity of the catalyst composed of very small Pt particles, which was prepared using the complex nanoparticles, was higher in the NO–CO reaction than those of the other catalysts. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Methanol electro-oxidation on mesocarbon microbead supported Pt catalysts   总被引:1,自引:0,他引:1  
Mesocarbon microbeads (MCMB) as Pt catalyst supports were characterized by X-ray electron diffraction, thermal field emission scanning electron microscope and electrochemical analysis. MCMB with different pretreatment were used as the catalyst supports. The XRD patterns show the existence of Pt and the micrograph of SEM shows Pt is absorbed uniformly on the surface of MCMB particles and the platinum grain size is ca. 3-5 nm. The effect of the pretreatment of the support on the catalyst performance of methanol electrooxidation was studied. Electrochemical analysis shows that MCMB are excellent candidates to be used as the support of catalyst for methanol electrochemical oxidation. The catalyst with MCMB boiled in KOH for 1 h as support exhibits a high catalytic activity during the electrooxidation of methanol.  相似文献   

18.
A study of CO oxidation by O2 over Pt catalysts, promoted by MnOx and CoOx, is described. The activities of Pt/SiO2, Pt/MnOx/SiO2 and Pt/CoOx/SiO2 are compared with commercial Pt/Al2O3, Pt/Rh/Al2O3 and Pt/CeOx/Al2O3 catalysts. Since these catalysts differ in dispersion and weight loading of platinum, the turnover frequencies are also compared. The following order in activity in CO oxidation after a reductive pretreatment is found: Pt/CoOx/SiO2 > Pt/MnOx/SiO2, Pt/CeOx/Al2O3 > Pt/Al2O3, Pt/Rh/Al2O3, Pt/SiO2. Over Pt/CoOx/SiO2 CO is already oxidised at room temperature. Possible models to account for the high activity of Pt/CoOx/SiO2 in the CO/O2 reaction are presented and discussed. Partially reduced metal oxides are necessary to increase the activity of the Pt/CoOx/SiO2, Pt/MnOx/SiO2 or Pt/CeOx/Al2O3 catalysts. It was shown that mild ageing treatments did not affect the activity of the Pt/CoOx/SiO2 catalyst in CO oxidation.  相似文献   

19.
A highly desirable selective catalytic reduction (SCR) of NO with real life diesel fuel over Pt supported zeolites with different topologies (Pt-ZSM-5, Pt-FER, Pt-MOR and Pt-BEA) is studied under simulated exhaust conditions. The catalysts are characterized by CO chemisorption, NH3-TPD and TGA. The NO conversion ability of these catalysts has been correlated with zeolite structure and acidity. Pt-MOR is found to be the most active catalyst, 90% NO conversion at 300 °C, however Pt-FER showed highly desirable low temperature window, 77% NO conversion below 260 °C. Over ZSM-5, BEA and Y with three dimensional pore structures extensive carbonaceous deposits are observed by TGA which are detrimental to NO conversion. On the other hand, FER zeolite having one dimensional pore structure did not allow extensive coke formation resulting in a highly desired low temperature NO conversion. The results suggest that, NO reduction mainly take place near the zeolite pore opening, which is in reasonable agreement considering the long and bulky molecules in diesel fuel.  相似文献   

20.
This paper presents a study on the influence of support (Al2O3, MgO, SiO2-Al2O3, SiO2-MgO, β-zeolite, and CeO2) of Cu-ZnO catalysts for the low-temperature water–gas shift reaction. Supported Cu-ZnO catalysts were prepared by the conventional impregnation method, followed by the H2 reduction. The activity of Cu-ZnO catalysts for the water–gas shift (WGS) reaction was largely influenced by the kind of support; Cu-ZnO catalysts supported on Al2O3, MgO, and CeO2 showed high activity, while those on SiO2-Al2O3, SiO2-MgO and β-zeolite showed less activity in the temperature range 423–523 K. XRD analysis demonstrated that the copper species were highly dispersed on the supports used in the present study, except for a MgO support. TPR results of a series of supported CuO-ZnO catalysts suggest that the reducibility of CuO is one of the important factors controlling the activity of the WGS reaction over the supported catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号