共查询到20条相似文献,搜索用时 0 毫秒
1.
纳米纤维具有较高的比表面积,独特的网状结构和空隙以及易于实现功能化的优点,倍受人们的关注。在众多的制备方法种,静电纺丝技术是一种最简单有效的技术,其中螺旋静电纺丝技术由于能够实现纳米纤维的规模化制备,也受到广泛的关注。本文将螺旋静电纺丝技术应用于胶原蛋白肽水溶液的静电纺丝,考察纺丝电压、螺旋片厚度、螺旋直径对纺丝直径的影响,进而探索螺旋静电纺丝技术纺丝成形的机理。研究结果表明:随着电压从60千伏升高到90千伏,纤维平均直径201mm降低116nm;随着螺旋片厚度从1.5mm增加到5mm,纤维平均直径从159nm减少到84nm;螺旋直径增加,导致纺丝纤维直径的离散程度呈上升趋势。 相似文献
2.
以壳聚糖(CS)为基材,使用静电纺丝的方法制备了搭载壳寡糖(CHOS)的CS/聚乙烯醇(PVA)/CHOS纳米纤维膜,并对纳米纤维膜的微观形貌、结构、抑菌性、亲水性以及溶解性能进行了研究。研究发现:CS/PVA/CHOS纳米纤维膜具备均匀密致的微观形貌;FT-IR测试表明,CHOS以物理混合的形式分散在CS/PVA/CHOS纳米纤维膜中;XRD测试表明,CHOS的加入改变了纳米纤维膜的结晶性,促进了各组分之间的相容性;水接触角测试表明纳米纤维膜具备良好的亲水性,在m(CS):m(PVA):m(CHOS)=20:80:10时,CS/PVA/CHOS纳米纤维膜的接触角相比于m(CS):m(PVA)=20:80的CS/PVA纳米纤维膜由59.8°下降到37.5°;抑菌性能和溶解性能测试表明,m(CS):m(PVA):m(CHOS)=20:80:10时的CS/PVA/CHOS纳米纤维膜相比于未搭载CHOS的CS/PVA纳米纤维膜,抑菌性提升了38.9%,溶解率提升了38.6%。 相似文献
3.
4.
5.
将水性聚氨酯(WPUR)与聚乙烯醇(PVAL)按照不同质量比制备质量分数为8%的纺丝溶液,通过静电纺丝制备WPUR/PVAL复合纳米纤维。运用扫描电子显微镜、傅立叶变换红外光谱仪和X射线衍射仪对WPUR与PVAL质量比不同的纺丝溶液制备的复合纳米纤维的微观形貌和结构进行分析。实验结果表明,PVAL的含量对复合纳米纤维的形成和形貌起着决定性的作用,随着溶液中PVAL含量的增加,纺丝过程中纺丝液逐渐从不连续复合纳米纤维转变为连续均匀的复合纳米纤维,纤维直径逐渐增大,当纺丝液中WPUR与PVAL的质量比为30∶70时,得到的复合纳米纤维形貌最佳,其平均直径为330.8 nm,具有最小标准差,为22 nm,同时随着纺丝溶液中PVAL含量的增加,所得复合纳米纤维的结晶性能增强。 相似文献
6.
7.
以水为溶剂,配制质量分数6%的聚乙烯醇(PVA)水溶液,将超支化聚赖氨酸(HBPL)按PVA∶HBPL质量比分别为9∶1,7∶1,5∶1加入PVA水溶液中共混均匀,制得纺丝溶液,在直流电压22 kV、推进速率为0.3 mL/h、接收距离为14.5 cm、30℃的条件下进行静电纺丝制得PVA/HBPL荧光纳米纤维膜,并对其结构性能进行表征。结果表明:PVA/HBPL荧光纳米纤维膜的纤维表面光滑,粗细均匀,平均直径为247~321 nm,在波长392 nm的激光激发下,PVA/HBPL荧光纳米纤维膜的发射波长为438 nm,荧光强度为40.80~98.20,荧光现象明显;随着HBPL含量的增加,PVA/HBPL荧光纳米纤维膜的纤维直径分布变宽,平均直径增加,熔点与熔融焓降低,荧光强度增强,拉伸强度先增加后减小,断裂伸长率降低。 相似文献
8.
PVP/PEO复合微纳米纤维的电纺性研究 总被引:1,自引:0,他引:1
采用聚乙烯毗咯烷酮/聚氧化乙烯/水(PVP/PEO/H2O)体系进行静电纺丝制备PVP/PEO复合微纳米纤维,研究了PVP/PEO共混溶液浓度、PVP相对分子质量及PVP:PE0(质量比)对PVP静电纺丝的影响.结果表明:当溶液质量分数增大到15%、PVP相对分子质量为1.3×106或PEO含量增大时,均可制得形貌清晰、表面光滑的微纳米纤维.当PVP/PEO溶液质量分数为12%、PVP相对分子质量为1.3 × 106及PVP:PE0(质量比)为8:2时,静电纺丝所得纤维形貌最佳. 相似文献
9.
以聚乳酸(PLA)和大豆分离蛋白(SPI)为原料,采用静电纺丝技术,制备了PLA/SPI复合纤维。采用FT-IR、SEM、XRD等分析手段对复合纤维进行表征。结果表明:PLA/SPI复合纤维中PLA和SPI通过氢键缔合,纤维直径分布在100~300nm之间。 相似文献
10.
以PVP作为络合剂与Ti(C4H9O)4反应制得前驱体,采用静电纺丝法制得PVP/TiO2纳米复合纤维后在马弗炉中煅烧,并采用SEM、TG—DTA、XRD等对纳米纤维进行了表征。结果表明:适当增加Ti(C4H9O)4浓度、增加静电电压、减小喷射速度和升高煅烧温度,电纺丝纤维直径变细;PVP/TiO2复合纤维煅烧至550℃时得到的为纯TiO2;经400℃、600℃、700%、900%煅烧后分别得到开始出现锐钛矿型的TiO2、以锐钛矿型的TiO2为主、以金红石型的TiO2为主和完全金红石晶型的TiO2纳米纤维。 相似文献
11.
12.
胶原蛋白/聚乙烯醇复合纤维的结构与性能 总被引:1,自引:4,他引:1
将水溶性聚乙烯醇与胶原蛋白进行湿法纺丝,初生纤维经过热拉伸、热定型和缩醛化等后处理,制得胶原蛋白/聚乙烯醇复合纤维。结果表明,纺丝过程中固含量为16%的原液纺得的复合纤维的蛋白质存留率可以达到98%以上,原液固含量为18%的蛋白质存留率为40%~50%;扫描电镜观察表明,复合纤维为异形纤维,截面呈菊花状,原液固含量为16%的复合纤维断裂强度、初始模量分别为7.07,108.66 cN/dtex,结晶度为47.16%,复合纤维的上染率可达到95%以上,水中软化点温度为100℃以上。 相似文献
13.
14.
通过溶液静电纺丝法制备了聚芳醚砜酮(PPESK)微纳米纤维膜,借助于扫描电子显微镜和拉伸试验机分别对纤维膜的形貌和力学性能进行了表征,用正交试验对微纳米纤维膜的制备工艺参数进行了优化。结果表明,在给定条件下,对纤维直径影响由大到小的工艺参数依次为:溶液浓度给料速度纺丝电压。纤维直径最小的工艺条件为:溶液浓度19%,纺丝电压10 k V,给料速度为0.04 mm/min。对纤维膜拉伸强度影响由大到小的工艺参数依次为:给料速度纺丝电压溶液浓度。纤维拉伸强度最大的工艺条件为:溶液浓度24%,纺丝电压14 k V,给料速度0.04 mm/min。 相似文献
15.
16.
通过静电纺丝方法,将氯化锂/N,N–二甲基乙酰胺(Li Cl/DMAc)溶解间位芳纶(PMIA)制备了PMIA纳米纤维,探索了溶液浓度、接收距离、纺丝电压及接收速度等工艺参数对纤维形貌及其直径分布的影响。通过扫描电子显微镜观察了PMIA纳米纤维形貌及应用Image-J软件测量统计了PMIA纤维直径。结果表明,溶液浓度为8%~10%、纺丝电压为16~18 k V、接收距离为15~20 cm,接收速度60~80 r/min的范围内,间位芳纶纳米纤维成型良好,直径分布范围为100~120 nm;PMIA纳米纤维直径随着溶液浓度的减小、静电电压的增加而减小,随着接收速度的增加纤维取向增加。 相似文献
17.
为了调控聚乳酸(PLA)纳米纤维的孔结构,采用静电纺丝技术,以PLA母粒为原料,三氯甲烷(CF)和N,N-二甲基甲酰胺(DMF)按一定比例混合的溶液为溶剂,制备了平均直径在1.37μm的PLA纳米纤维,并对其结构进行表征。结果表明,PLA纳米纤维的平均直径随着纺丝液中CF含量、聚合物浓度、环境湿度的增加而增大;随纺丝电压和灌注速度的增大而呈减小的趋势。同时,环境湿度对纤维表面孔结构有显著影响。随着湿度的增加,纤维表面孔的分布密度增加,且形状由圆形转变为椭圆形。此外,与表面光滑的PLA纳米纤维(2.4 m2/g)相比,所制备的PLA多孔纤维的比表面积提升了10倍(24.0 m2/g)。 相似文献
18.
采用自制的熔体同轴静电纺丝装置,通过控制壳层聚丙烯(PP)与核层聚乳酸(PLA)+聚乙二醇(PEG)的流量大小,制备不同直径、不同结构和不同热焓的核壳结构纤维。研究结果表明,在总流量不变的情况下,核层PLA+PEG流量增加,获得的纤维直径增大,1 g/h时平均直径为2.4μm,5 g/h时为6μm;PLA+PEG与PP流量相差越大,纤维直径越不均匀,内外层结构也越不均匀;PLA+PEG流量增大,制备的纤维热焓增大。为获得直径均匀、结构均匀、热焓较大的核壳结构超细纤维,PLA+PEG与PP流量比值控制在1~2倍较佳。 相似文献
19.
聚乳酸/聚乙烯醇纳米纤维的制备及结构 总被引:1,自引:0,他引:1
以二甲基亚砜为溶剂,制备不同配比的聚乳酸(PLLA)和聚乙烯醇(PVA)的混合溶液,静电纺丝制得PLLA/PVA纳米纤维。采用红外光谱仪、原子力显微镜等对PLLA/PVA纳米纤维结构与性能进行了表征。结果表明:PLLA/PVA纳米纤维中PVA上的羟基与PLLA上的羰基形成了氢键,PLLA与PVA之间存在一定的相互作用,但PLLA/PVA纳米纤维存在相分离现象;混合溶液的PLLA质量分数为11%,PVA质量分数为8%时可以得到较好的PLLA/PVA纳米纤维,但PVA质量分数为6%时出现液滴及珠丝,PVA质量分数为4%时,不能制得纳米纤维。 相似文献