首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
驱动电压幅值对双压电薄膜管道微机器人运动的影响   总被引:1,自引:0,他引:1  
研究了一种细小管道内移动微机器人,它可以搭载摄像机进入φ20mm的管道内部进行检测作业.微机器人驱动器采用PZT双压电薄膜驱动器.介绍了微机器人的结构及运动机理.着重介绍了驱动电压幅值对此类微机器人运动的影响,通过建模、仿真以及有限元分析,得到随着驱动电压幅值的增加,驱动器振幅增加,微机器人速度增加的结论,并通过实验验证了此结论,此结论对提高此类微机器人的工作效率有重要意义.  相似文献   

2.
本文研究了一种细小管道内移动微机器人.它采用PZT双压电薄膜驱动器,利用惯性冲击原理产生运动,可以搭载CCD摄象机或其它检测装置进入Φ20mm的工业管道内部实施作业.文中描述了此种微机器人的结构,对其运动进行了力分析.以此理论为基础制作了微机器人实验样机,其最大运动速度可达18mm/S.  相似文献   

3.
压电双晶片型惯性冲击式旋转精密驱动器研究   总被引:5,自引:2,他引:3  
研制了一种以自由端带有集中质量的悬臂式压电双晶片为驱动单元的新型惯性冲击式旋转精密驱动器。对自由端带有集中质量的悬臂式压电双晶片的动态特性进行了有限元法和实验分析,提出了压电双晶片型惯性冲击式精密驱动器特定的定频调压驱动方法。对压电双晶片型惯性冲击式旋转精密驱动器进行了性能测试,驱动器旋转行程为180°、旋转步长分辨力为1μrad、最大转速为0.2 rad/min、最大扭矩为0.02 Nm。该驱动器结构简单,特别是成本为传统惯性冲击式驱动器的1/100左右。  相似文献   

4.
《机械设计与制造》2017,(Z1):213-216
介绍了压电式微型仿生六足分节机器人的理论设计原理,阐述了适用于该微机器人的动力学模型,研究了该微机器人机身和压电驱动器的加工工艺,并对加工出的压电驱动器进行了测试和分析。把在微机械方面应用极广泛的压电驱动器应用到微型仿生六足分节机器人上,结构简单、新颖,不仅使微型仿生机器人在驱动研究的新领域有所突破,还使其在整体机械结构设计上有所创新。  相似文献   

5.
针对目前压电驱动器主要使用锯齿波这种非对称波电信号驱动压电晶体实现驱动的现状,设计了非对称夹持构件,提出了非对称夹持压电双晶片振子的旋转驱动器的结构设计方案,使对称波电信号作用在压电双晶片振子上,产生正反两方向大小不同的周期性惯性冲击力,驱动机构实现旋转位移。建立了压电旋转驱动器的动力学模型,并分析了非对称夹持旋转驱动器实现大小不同的惯性冲击力原理以及压电旋转驱动器的运动过程。组成了压电旋转驱动器的测试系统,在不同电压幅值、频率的方波激励下,对压电旋转驱动器的平均步长进行了测试。结果表明:非对称夹持式压电旋转驱动器能实现较稳定的单向转动,最大行程360°,最大承载能力超过300g,步长分辨率5µrad,最大转动速度4000µrad/s;驱动器样机在20V、2Hz的方波激励下,平均运动步长12µrad,转动速度24µrad/s。  相似文献   

6.
微型机器人用于检查管道内的缺陷   总被引:1,自引:0,他引:1  
管径φ10~20 mm的细小管道在工业中应用十分广泛,因此迫切需要研究一种管道检测机器人进入管道内部, 对其缺陷进行检测或维修.为此目的,近年来发展了不同类型的微型机器人,例如:气囊蠕动型、螺旋摩擦型、电磁力型、SMA型、冲击型机器人,并且取得了一些可喜进展.本文报道一种采用双压电薄膜PZT驱动器的细小管道实验微机器人,它可以携带CCD摄像机进入φ20 mm的垂直、水平或弯曲管道, 检查管壁上的小孔或裂纹.论述了此种微机器人的实验系统、结构、运动机理和性能.  相似文献   

7.
双压电薄膜微机器人的功耗及速度的影响因素   总被引:1,自引:0,他引:1  
双压电薄膜微机器人可用于检测20mm内径的管道内壁异常情况,本文研究了此种微机器人的输入功率影响因素,并推导了计算公式,用实验的方法分析了微机器人的速度影响因素,得出采用脉冲波,增大驱动电压,在微机器人的固有频率附近工作可提高微机器人运动速度的结论。  相似文献   

8.
双压电薄膜管道微机器人的功耗分析及电路优化设计   总被引:2,自引:2,他引:0  
研究了PZT双压电薄膜管道微机器人的功率消耗,推导出其功耗计算公式S=Kfcv2,指出微机器人功耗与驱动电压幅值平方成正比,与驱动电压的频率成正比,与微机器人的电容成正比.优化设计了微机器人的驱动电路,使得其在驱动电压幅值不变的情况下,大幅度提高运动速度.通过实验验证此结论.以上分析研究是此类微机器人无缆化设计的理论基础.  相似文献   

9.
研制出了尺寸为30 mm×30 mm×50 mm的压电陶瓷驱动的球基微驱动器样机,并对该微驱动器进行动力学分析以及微型轴孔装配的实验研究。建立了微驱动器金属球空间坐标关系,分析了球基微驱动器的动力学特征,并建立了其动力学模型。采用龙格-库塔法计算出了微驱动器的动力学参数,并利用MATLAB的SIMULINK模块搭建了微驱动器的仿真模型,并对其进行了动力学仿真分析。研制出了球基微驱动器样机,并在此基础上,集成微夹持器形成微操作器,对微驱动器性能进行了实验测试,并开展了Φ180 μm微型轴与Φ200 μm微型孔之间的精密微装配实验研究。最后,分析了微驱动器金属球质量、驱动信号频率、以及金属球与微驱动单元摩擦块接触表面摩擦系数对其性能的影响。实验结果表明:该球基微驱动器的转动分辨率为0.000 1°,转动定位精度为0.000 5°,微驱动器最大工作频率为1 200 Hz。实验结果验证了逆转振动模型的正确性,由该微驱动器所集成的微操作器,完全可以满足对微小元器件的微米级操作与装配等精密作业的要求。  相似文献   

10.
提出一种由4组压电陶瓷驱动器驱动的微小型移动机器人系统.基于惯性冲击原理,4组压电陶瓷驱动器在不同形式锯齿波电压的驱动下,能够实现机器人2个平动运动自由度和一个旋转运动自由度.基于DDS波形发生原理,为机器人设计了由C8051F040高速单片处理器、FPGA和功率放大器所构成的机器人驱动控制系统.机器人运动性能测试试验表明,提出的微小型移动机器人统具有亚毫米级的运动速度和亚微米级的运动分辨力,可以作为微操作系统中的移动式精密定位机构.  相似文献   

11.
PZT piezoelectric very thin films suitable for a microactuator have been deposited onto Invar alloy substrate using a high-temperature RF magnetron sputtering technique. PZT thin films must be deposited onto conductive substrate for a monomorph or a bimorph actuator. The chemical composition and the crystalline structure of these films were measured by ESCA and XRD, respectively. The chemical composition of PZT deposited stoichiometrically was almost the same as commercially-produced bulk PZT. Crystal planes (1 1 0) and (1 1 1) of PZT perovskite structure were observed in XRD analysis. When the substrate was heated to above 600 °C, SEM revealed only a very small number of pinholes on the surface. A thin (500 nm) film actuator has been characterized by measuring the piezoelectric property using a Laser Doppler Vibrograph. It was confirmed that the piezoelectric property has a linear relationship with the grain size, which also increased with the substrate temperature. The piezoelectric property of deposited PZT thin films showed a good agreement with a quoted value of bulk PZT, when the substrates were heated to 600 °C.  相似文献   

12.
An experimental bimorph piezoelectric element (PZT) actuator for small pipe robot is developed. The robot can move in φ20 mm pipe, and can carry a CCD camera for detecting cracks or fine holes on inner surface of pipe. The velocity of the robot can reach 17~22 mm/s for vertical pipe up/down, respectively. Moving principle and its performance characteristics are presented.  相似文献   

13.
为发挥压电陶瓷分辨率高、频响高、功耗低及抗电磁干扰能力强等优点,进一步简化压电旋转驱动器的结构,提高压电驱动工作效率,设计和研制一种新型压电旋转驱动器。驱动器以压电陶瓷双晶片为原动件,通过联接机构联接定子和转子,选用滚子结构的超越离合器驱动机构,将双晶片扭转位移运动转化为输出轴的连续旋转运动。驱动器结构简单,体积小。通过理论分析、有限元仿真和试验研究表明,驱动器的转速与驱动信号的频率、电压近似呈线性关系,具有良好的输出特性,步进精确,运行平稳可靠,适于在微驱动领域应用。  相似文献   

14.
单振子双腔体无阀压电泵结构设计与机理分析   总被引:1,自引:2,他引:1  
提出了一种单振子双腔体无阀压电泵,应用小挠度弹性弯曲理论导出了圆形复合压电振子的弹性曲面微分方程,分析了采用一个压电振子形成两个工作腔体压电泵的结构和工作机理,并与单振子单腔体压电泵对比分析了该结构与输出流量的关系。设计研制了结构独特、输出性能更高的单振子双腔体无阀压电泵,通过试验表明:单振子双腔体无阀压电泵比单振子单腔体无阀压电泵输出流量有明显提高。  相似文献   

15.
压电陶瓷驱动器蠕变特性的研究   总被引:8,自引:1,他引:8  
范伟  余晓芬 《仪器仪表学报》2006,27(11):1383-1386
压电陶瓷驱动器具有位移分辨率高、体积小、响应快、输出力大、不发热等优点,但其固有的迟滞、蠕变和非线性,严重影响了它的定位精度。在大行程微动工作台中,需要借助于位移放大机构来克服压电陶瓷驱动器位移行程小的缺点,但放大机构在放大位移的同时,也放大了压电陶瓷蠕变和迟滞误差的影响。本文通过对一种大行程压电陶瓷微动工作台蠕变特性的研究性实验,得到了该机构的蠕变特性曲线,找到了压电陶瓷驱动器蠕变的规律,为进一步修正和减少蠕变误差的影响、提高系统的定位精度,提供了科学的依据。  相似文献   

16.
基于PZT压电陶瓷驱动器的非球面能动抛光盘,能够在PZT驱动器的作用下改变面形,用于中小口径非球面镜加工。一个口径100mm、含19个PZT驱动器的非球面能动抛光磨盘已经试制完毕,用于一个口径350mm、k=-1.112155、顶点半径R=840mm双曲面镜的加工实验。为研究PZT压电陶瓷驱动器迟滞效应对非球面能动抛光盘输出面形的影响,实测各PZT压电陶瓷驱动器的电压位移特性曲线,用基于径向基函数的神经网络算法建立各PZT压电陶瓷驱动器位移输出特性的数学模型并实施补偿,实测各PZT压电陶瓷驱动器迟滞补偿前后的位移输出值。最后利用有限元分析方法,得到迟滞补偿前后非球面能动抛光盘的输出面形,以及剩余残差RMS相应分别为1.910um、0.342um。通过补偿各PZT压电陶瓷驱动器的迟滞效应,非球面能动抛光盘输出面形精度得到了提高,剩余残差RMS减少了82%。  相似文献   

17.
惯性冲击驱动管内移动机器人设计   总被引:1,自引:0,他引:1  
设计了一种以压电双层膜为基本结构,通过惯性冲击原理达到运动驱动目的的管内移动机器人.该机器人主要由一个典型的压电双层膜结构和惯性质量串联构成.工作时,压电双层膜的变形由惯性冲击转化为整体结构的直线位移.从理论上分析了惯性冲击原理的核心问题:惯性冲击力与管壁和机器人之间摩擦力的关系,并通过MATLAB和AN-SYS等软件对整个系统的动态响应做了仿真.相关的验证表明,所设计的管内移动机器人运动步长可以达到0.15μm,具有精密运动和高效率的优点,可以在工业中广泛应用.  相似文献   

18.
压电双晶片驱动的仿生柔性扑翼机构研究   总被引:5,自引:2,他引:3  
分析了昆虫的翅膀-胸部运动系统,并以此为基础,仿生设计出压电双晶片驱动,柔性双摇杆机构放大位移并带动仿生翅拍动的扑翼系统.分析了压电双晶片的工作原理,讨论了柔性四杆机构的自由度和运动学,并对整个系统的准静力学进行探讨,以确定能否产生足够的力克服空气阻尼.仿真和实验结果表明,通过柔性机构放大压电双晶片位移,能实现仿生翅所需运动,同时进一步的优化设计将有助于改进扑翼机构的运动性能.  相似文献   

19.
利用智能材料锆钛酸铅(PZT)的动态响应特性,对PZT驱动器施加一定频率的激励使被测构件产生振动的同时,采集和识别PZT传感器信号,获取正常及故障状态时的响应模型并建立故障识别数据库,然后用实际系统和故障识别数据库中的数据进行比较,从而确定系统是否发生故障及故障类别.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号