首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《粉末冶金学》2013,56(2):120-126
Abstract

This paper describes the microstructural and mechanical properties of injection moulded 17-4 PH stainless steel gas and water atomised powder. Gas and water atomised stainless steel powders were injection moulded with wax based binder. The critical powder loading for injection moulding were 62·5 and 55 vol.-% for gas and water atomised powders respectively. Binder debinding was performed using solvent and thermal method. After dedinding the samples were sintered at different temperatures for 1 h in pure H2. Metallographic studies were conducted to determine to extend densification and the corresponding microstructural changes. The results show that gas atomised powder could be sintered to a maximum (98·7%) of theoretical density, and water atomised powder could be sintered to a maximum (97·08%) of theoretical density. Maximum tensile strength was obtained for gas atomised powder sintered at 1350°C. The tensile strength of the water atomised powder sintered at the same temperature was lower owing to higher porosity. Finally, mechanical tests show that the water atomised powder has lower mechanical properties than gas atomised powder.  相似文献   

2.
The sintering of aluminum with substantial additions of nickel was investigated. It was determined that within the temperature range (700–750°C) and concentration range (10–17.5 at. % Ni) it was possible by the sintering of pressed powder compacts to obtain alloys with densities approaching the theoretical. The hardness and tensile strength of the alloys increased and the ductility decreased with increasing nickel concentration and increasing temperature. The curves of yield, tensile strength, and ductility vs nickel concentration exhibited maxima.  相似文献   

3.
《粉末冶金学》2013,56(3):233-237
Abstract

A modified metal injection moulding (MIM) process of 316L stainless steels powders using an acrylic thermosetting resin has been developed. Gas and water atomised 316L powders were used. In order to optimise the mixing and moulding steps, different volume fractions of the two components were investigated. Mixing of metal powder and binder was carried out at room temperature and immediately moulding was performed by pouring the slurry in the moulds. It was then heated at 90°C to permit the polymerisation and cross linking of the resin. Different heating cycles, rates, and atmospheres were studied by means of thermogravimetrical analysis. The data obtained were used to establish the best debinding cycle. The debound samples were sintered at different temperatures and high densities (98% of theoretical) were obtained. Materials in as moulded (green part), debound (brown part), and sintered conditions were examined by means of SEM.  相似文献   

4.
Craus M.-L.   《粉末冶金学》2013,56(4):367-373
Abstract

Stainless steel 316L MIM components can be made from either prealloyed powders or from master alloys blended with carbonyl iron powder. In this study these two techniques were compared using prealloyed and master alloyed gas atomised powders of ? 16 μm and ? 22 μm sizes. Four different compounds were prepared, characterised and injection moulded into tensile bars. The bars were compared for green strength, green defects, sintered strength and microstructure. The green components are stronger when carbonyl iron powder is used with the gas atomised master alloy. This material also seems to be less susceptible to moulding defects. The sintering strength of the material produced using the pre-alloyed powder was higher than the master alloyed prepared material. Little difference in mechanical properties existed between the materials fabricated from gas atomised prealloyed ? 16 μm and the ? 22 μm powders. Also, the viscosity of the mixtures was higher for the ? 16 μm material and the master alloy mixtures than for the –22 μm gas atomised prealloyed powders.  相似文献   

5.
《粉末冶金学》2013,56(3):427-431
Abstract

This paper describes the microstructural and mechanical properties of injection moulded aluminium powder. Gas atomised aluminium powder was injection moulded with wax based binder. The critical powder loading for injection moulding was 62·5 vol.-% for feedstock. Binder debinding was performed in solvent and thermal method. After debinding, the samples were sintered at different temperatures and times in high purity N2. Metallographic studies were conducted to determine the extent of densification and the corresponding microstructural changes. The results show that gas atomised aluminium powder could be sintered to a maximum 96·2% of theoretical density. Maximum density, tensile strength and hardness were obtained when sintered at 650°C for 60 min.  相似文献   

6.
《粉末冶金学》2013,56(3):360-365
Abstract

This study aims to compare the effect of Al2O3 nanoparticle additions on the densification and mechanical properties of the injection moulded 316L stainless steels. The 316L stainless steel and Al2O3 nanoparticles were dry mixed and moulded using a wax based binder. The critical powder loading for injection moulding were 60 vol.-% for all samples. Debinding process was performed in solvent using thermal method. After the debinding process, the samples were sintered at 1405°C for 60 and 120 min under vacuum. Metallographic examination was conducted to determine the extend of densification and the corresponding microstructural changes. The sintered samples were characterised by measuring tensile strength, hardness and wear behaviour. Wear loss was determined for all the samples after wear testing. All the powders, fracture surfaces of moulded and sintered samples were examined using scanning electron microscope. The sintered density of straight as well as Al2O3 nanoparticles reinforced injection moulded 316L stainless steels increases with the increase in sintering time. The additions of Al2O3 nanoparticles improve the hardness and wear resistance with the increase of sintering time.  相似文献   

7.
《粉末冶金学》2013,56(2):150-155
Abstract

In this study, a correlation between green part dimensional variation and feedstock viscosity variation is presented for the powder injection moulding (PIM) manufacturing process. A correlation of an increase in green part dimensional variation as feedstock viscosity variation increases has been found and the correlation was independent of powder type (316L gas atomised and water atomised) and mixing technique (batch and continuous). The variation of feedstock viscosity was lowest over the greatest temperature range for high shear continuous compounding with a broad distribution of irregularly shaped powder. Thus, this feedstock material would have the greatest process window for injection moulding with the least variation.  相似文献   

8.
《粉末冶金学》2013,56(2):112-117
Abstract

Gas and water atomised 316L stainless steel powders with similar powder morphology and particle size were injection moulded and sintered. The results show that compacts prepared from the gas atomised powder exhibit higher density and tensile strength, whereas those prepared from the water atomised powder exhibit higher elongation, finer grain size and superior corrosion resistance. Chemical analysis shows that the water atomised powder has a higher Si and O content, and microstructural analysis of the sintered compacts reveals that SiO2 particles disperse as a second phase in the compacts prepared from the atomised powder, which accounts for the property behaviour. Due to the presence of SiO2, the porosity increases, whereas the pore coarsening and grain growth are inhibited. Besides, SiO2 particles can also improve the passivation effect of stainless steel, and hence increase the corrosion resistance.  相似文献   

9.
研究了316L不锈钢粉注射成形等低压成形工艺的粉末真空松装烧结行为及其影响因素。通过添加石墨实现脱氧控碳,分析比较了气、水雾化粉真空松装还原烧结行为的差异。  相似文献   

10.
《粉末冶金学》2013,56(1):59-67
Abstract

The sintering behaviour of Fe and Fe–Mo prealloyed powder compacts containing from 0·5 to 3·5 wt-%Mo and fixed boron additions has been studied with special emphasis on the microstructural development, the formation of the liquid phase and the liquid phase sintering mechanisms involved during the densification process. The basic phenomena involving the formation of a liquid phase and the temperature at which the liquid is generated is strongly influenced by the Mo/B ratio in the initial powder mixture. The effect produced by Mo and its concentration, both, on the final microstructure and on the behaviour of boron prior to, during and after the formation of the liquid phase, was studied under both the optical and the scanning electron microscope. For this purpose interrupted sintering experiments followed by water quenching from specific temperatures and times within the sintering cycle have been carried out. The study shows that the formation of a liquid phase is preceded by noticeable enhancement of solid state sintering at intermediate temperatures. This is accompanied by boron diffusion into the metallic particles, generating inter- and intragranular precipitates in amounts dependent on the Mo concentration. At a later stage boron is found to be preferentially located at the boundaries as the formation of a continuous Fe/Mo/B liquid phase with excellent wetting characteristics proceeds thus producing densification by pore filling and shape accommodation. Final densities up to 7·82 g cm?3 were obtained for these alloys.  相似文献   

11.
《粉末冶金学》2013,56(4):368-375
Abstract

Polymer burnout (pyrolysis or delubrication) is a crucial step in sintering die compacted powders. To systematically analyse and design the thermal delubrication step, the master decomposition curve (MDC) has been formulated based on the intrinsic kinetics of polymer pyrolysis. The Kissinger method was used to estimate the activation energy from thermogravimetric analysis (TGA) experiments. The activation energy of poly(ethylene-co-vinyl acetate) (EVA) was determined and an MDC analysis was performed to map the weight loss of the polymer as a function of time and temperature. The developed MDC was used to investigate the effects of powder chemistry, powder shape, and particle size of 316L stainless steel on the decomposition behaviour of EVA. The activation energies for decomposition of EVA decreased in the presence of gas and water atomised 316L stainless steel powders, indicative of a catalytic effect. This effect was more pronounced for the first decomposition step suggesting the possible role of a carboxylate ion – metal transition state complex that promoted decomposition. In addition, the gas atomised 316L stainless steel had a greater effect on lowering the activation energy for decomposition compared to water atomised 316L stainless steel, emphasising the influence of powder surface chemistries. Based on the MDC analysis, the required hold time can be predicted for a given temperature and target binder weight loss. This reduces the experimentation required to optimise the delubrication cycle. Furthermore, when extrapolating to very small particle sizes, this approach is of particular interest for predicting the behaviour of nano-particulate materials.  相似文献   

12.
《粉末冶金学》2013,56(2):144-149
Abstract

In this study, the effect of powder characteristics and their variability on the dimensional variability of green and sintered PIM components has been examined for 316L stainless steel. Three lots of gas atomised and three lots of water atomised powders were characterised and used to make six batches of PIM compound. These compound lots were injection moulded using a cavity pressure transducer and screw position regulation controls. The moulded geometry was measured in the green state and sintered state for dimensional variability. The general findings are that gas atomised powder produce less dimensional variability than the water atomised powder from lot to lot, however, the water atomised powders produce less in lot dimensional variability and are generally less susceptible to distortion of cantilevered members during sintering. Also, the lot to lot variation in the powder characteristics, such as particle size and pycnometer density, have an effect on dimensional stability whereas variations in powder characteristics such as surface area, tap and apparent density, and chemistry have little effect on dimensional stability.  相似文献   

13.
《粉末冶金学》2013,56(3):242-252
Abstract

This work studies a set of low cost beta alloys with the composition Ti–7Fe, processed by conventional powder metallurgy (PM). The materials were prepared by conventional blending of elemental Ti hydride–dehydride powder with three different Fe powder additions: water atomised Fe, Fe carbonyl and master alloy Fe–25Ti. The optimal sintering behaviour and the best mechanical properties were attained with the use of Fe carbonyl powder, which reached a sintered density of up to 93% of the theoretical density, with UTS values of 800 MPa in the ‘as sintered’ condition. Coarse water atomised powder particles promoted reactive sintering, and coarse porosity was found due to the coalescence of Kirkendall porosity and by the pores generated during the exothermic reaction between Ti and Fe. The addition of Fe–25Ti produced brittle materials, as its low purity (91·5%) was found to be unsuitable for formulating Ti alloys.  相似文献   

14.
Contributors     
none 《粉末冶金学》2013,56(1):52-54
Abstract

The chemistry of a high performance cast superalloy, ZhS6–K (Ni–10Cr–5Co–5W–5Al–3·5Mo–3Ti–0·2C–0·02B), was modified by slight reductions in carbon, titanium, and aluminium content and minor additions of niobium and hafnium. Two variants of the modified alloy chemistry with different boron contents (0·02 and 0·08 wt–%) were prepared by vacuum induction melting, argon atomization, and consolidation by hot isostatic pressing at three temperatures. It was observed that, unlike carbon, an increase in boron content did not promote the formation of continuous precipitates at the prior powder particle boundaries. Increased boron content narrowed down the consolidation temperature range and changed the morphology of γ′ particles from cuboidal to dendritic. Precipitation of an eutectic γ + γ′ structure and formation of continuous boride films at the grain boundaries severely degraded the mechanical properties of the high boron PM superalloy that was consolidated at a temperature marginally above the γ′ solvus. An optimum consolidation schedule was determined for the high boron alloy, which after a suitable heat treatment produced significant property improvement in stress rupture and tensile properties. PM/0416  相似文献   

15.
《Metal Powder Report》2002,57(3):32-37
This work evaluated the influence of gas and water-atomised powders on form retention and mechanical properties of PIM 316L stainless steel components. Two different particle morphologies were used for powder mixtures varying the proportions of spherical and irregular powder -- gas and water atomised powders respectively — varying the content from zero through 25 per cent, 50 per cent, 75 per cent and 100 per cent by mass. The mixtures of gas and water-atomised powders with higher solids loading showed lack of homogeneity and inadequate moulding characteristics. The form retention of samples moulded with only water-atomised powder showed only small shrinkage anisotropy and distortion. The gas-atomised powder PIM samples also demonstrated minor anisotropy, but they showed more slump during chemical and thermal binder removal. Samples with the two powders presented a higher degree of geometric anisotropy. Best results for densification and mechanical properties were obtained by components using water-atomised powder showing 95 per cent of theoretical density and resistance up to 500 MPa.  相似文献   

16.
采用真空液相烧结法制备了4种掺加不同B含量的Ni-Cr-Mo合金,研究了B对其组织与性能的影响。研究结果表明,B与Mo、Cr、Ni等合金元素在烧结时可以形成共晶液相,通过原位化学反应,生成Mo2NiB2、(Mo,Cr)2NiB2陶瓷相。热腐蚀性试验表明,形成的硼化物相具有较好的耐腐蚀性,能够有效提高Ni-Cr-Mo合金的耐热腐蚀性能。  相似文献   

17.
The effect of boron on the sintering of iron powder was investigated. Boron (0–400 ppm) was added to high-purity iron powder of the German firm “Mannesmann.” Powder mixtures were pressed to compacts of identical density and sintered at different temperatures in different atmospheres. The results indicated the absence of a liquid phase and no influence of boron in the high-temperature stage of sintering. However, boron additions substantially improved sintering at low temperatures (up to 800°C) due to an effect on the interparticle contacts. With a properly selected sintering regime, microadditions of boron substantially increase the density of sintered ingots.  相似文献   

18.
《粉末冶金学》2013,56(5):420-426
Abstract

The densification and sintering behaviour of a cryomilled copper powder (grain size of 17±2 nm and dislocation density of 6·26±0·04×1016 m?2) were investigated and compared to those of an atomised copper powder with the same mean particle size in order to highlight the effect of the nanostructure on spark plasma sintering (SPS). Oxygen and nitrogen contamination of the cryomilled powder gives rise to extensive degassing during SPS up to 400°C. The cryomilled powder is more resistant to plastic deformation than the atomised one, but the huge density of dislocations and grain boundary activates sintering at low temperature. Densification is therefore promoted by deformation in the atomised powder and by sintering shrinkage in the cryomilled one. As a consequence, in the SPS conditions investigated, the atomised specimen is densified but not sintered, while the cryomilled one is effectively sintered and consequently densified.  相似文献   

19.
《粉末冶金学》2013,56(3):299-307
Abstract

This study elucidates the effects of key injection moulding and sintering factors on the dimensions and mechanical properties of 316L stainless steel metal injection moulded compact. Sintered parts of optimal quality can be produced by properly setting the process parameters. Taguchi method and principal component analysis are performed initially to elucidate and optimise the key control factors that affect the qualities of metal injection moulded compact. Next, a feasible process window is tested by observing the powder and binder distribution of green parts, for various control factors of injection moulding. Experimental findings show that, first, a proper injection speed facilitates mould filling during injection moulding and so improving the quality of sintered parts; second, temperature critically determines the rate of dimensional shrinkage, density and hardness of sintered parts; Third, optimal parameters setting can efficiently improve the quality of 316L metal injection moulded compact.  相似文献   

20.
none 《粉末冶金学》2013,56(4):241-244
Abstract

The use of replicative processes has become strategic and critical in industry to produce precise, microscopically detailed metallic parts and devices via low cost manufacturing routes. Metal powder hot embossing is an emerging process that brings some advantages associated with the reduction of production costs relative to powder injection moulding (PIM). The technology involves four distinct steps: preparation of the selected feedstock material (powder and binder); hot embossing; debinding; and sintering. The effect of continuous pressure during the hot embossing step as a means of replicating microdetails in 316L stainless steel parts is examined. Dimensional accuracy, microstructure and mechanical properties of the parts produced were evaluated. For the configuration tested, the most promising results were achieved when processing at 180°C for 30 min at a pressure of 14 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号