首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《粉末冶金学》2013,56(3):240-252
Abstract

A comparison has been made between compaction, sintering, microstructural and mechanical properties of the 6061 aluminium alloy prepared via premixed elemental (EL) and prealloyed (PA) powders (as received and degassed) with and without additions of sintering aids and various solid and/or liquid lubricants. Both EL and PA powders were cold pressed at different pressures, ranging from 250 to 770 MPa, and sintered under vacuum in the range 580–640°C for 30–120 min. and then under pure nitrogen atmosphere for comparison. Vacuum degassing of the PA powder provided better compressibility and thus higher green densities than those for the as received PA or the premixed EL powder compacts pressed at compaction pressures ≥340 MPa. Near full sintered densities of , ~98%TD were obtained for both EL and PA 6061 Al alloys. Degassed PA Al with 0·6 wt-% paraffin wax (PW) or with only 0·12 wt-%Pb addition as sintering aid and no lubricant, and premixed EL with only 0·12 wt-%Pb addition and no lubricant gave the best optimum properties. It became apparent that additions of some solid lubricants such as lithium stearate (LS) and acrawax to both the premixed EL and PA powders provided reasonable green densities, but had deleterious effect on sintered densities and microstructures, particularly under vacuum sintering. Heating data curves during the sintering cycle, revealed formation of both transient and persistent liquid phases for the EL and mainly supersolidus liquid phase sintering (SLPS) mechanism for the PA. Tensile properties of the degassed, vacuum or nitrogen sintered PA Al alloy in T6 condition were higher than those of the equivalent alloy prepared by EL mixing with the former giving a tensile strength of 330 MPa and 6–8% elongation to failure, which are similar to those of the commercial (wrought) 6061 Al alloys.  相似文献   

2.
《粉末冶金学》2013,56(5):592-598
Abstract

Thermo-Calc modelling was employed to predict liquid phase amounts for Fe–0·85Mo–(0·4–0·6)Si–(1·2–1·4)C in the temperature range of 1285–1300°C and such powder mixes were pressed and liquid phase sintered. In high C steels, carbide networks form at the prior particle boundaries, leading to brittleness, unless the steel is heat treated. To assist the break-up of these continuous carbide networks, 0·4–0·6% silicon, in the form of silicon carbide, was added. After solution of processing problems associated with the formation of CO gas in the early part of the sintering cycle, and hence large porosity, densities in excess of 7·75 g cc?1 were attained. A spheroidising treatment resulted in microstructures having the potential of producing components, which are both tough and suitable for sizing to improve dimensional tolerance. Yield strengths up to 410 MPa, fracture strengths up to 950 MPa and strains up to 16% were attained.  相似文献   

3.
ABSTRACT

The aim of this research is to study the pore structure as well as to assess the liquid phase sintering behaviour of Cu-28Zn powder specimens at different green density levels and temperatures. For this purpose, samples were compacted to obtain six different green densities and then sintered at 870°C, 890°C and in part at 930°C for 30?min. The results revealed that the spherical pores which are formed inside the grains can be swept by grain boundaries due to grain growth and join to primary pores so that secondary intragranular pores are eliminated and intergranular pores enlarged at higher temperatures. Also, the pores move upwards to the top of sample due to buoyancy forces. The role of pore structure in distortion is more tangible at higher temperatures (930°C) so that O-shape and X-shape distortions were observed at high and low green density samples, respectively.  相似文献   

4.
none 《粉末冶金学》2013,56(4):269-272
Abstract

The effect of additions of silicon powder on the sintering behaviour and microstructure of compacted 304L stainless powder has been studied. The shrinkage ratio increases substantially with silicon content. Silicon profoundly activates the sintering process through the formation of a eutectic and/or δ ferrite, which is pseudoperitectically formed during sintering. The sintering behaviour is closely related to the microstructures, which depend upon the amount of silicon addition. Ostwald ripening is encountered in the liquid phase sintered specimens (Si≤3 wt-%). The solid phase sintered materials (Si≥ wt-%) containing δ ferrite densify more rapidly than the liquid phase sintered ones. The densification kinetics are governed by the wetting characteristics of the eutectic liquid and the formation of ferrite. As a result of the silicon addition, the austenitic stainless steel powder aggregates are sintered into duplex stainless steels with austenite-ferrite structures. PM/0395  相似文献   

5.
Development of cermet microstructures during sintering   总被引:1,自引:0,他引:1  
Six Ti(C,N)-TiN-WC-Co cermet materials originating from the same powder mixture but sintered to different stages of the sintering cycle have been studied using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), electron energy-loss spectroscopy (EELS), and energy-filtered transmission electron microscopy (EFTEM). At 1350 °C, the binder phase exists both as solid and as liquid phase. The cobalt is nanocrystalline before melting, probably due to deformation during milling. A tungsten-rich inner rim starts to form and is very inhomogeneously distributed on the Ti(C,N) cores, indicating that it is difficult to nucleate the inner rim. The outer rim mainly forms at the sintering temperature and accounts for grain growth during the holding time. There are no major variations in metal content of the carbonitride phases in the materials sintered to 1350 °C or higher, although the N/(C+N) atomic ratio changes somewhat. Close to the core-rim boundary of the materials sintered at 1430 °C, there is often an enrichment of nitrogen in the core that is believed to be the result of nitrogen diffusion from the tungsten-rich rim to the titanium-rich core during cooling.  相似文献   

6.
《粉末冶金学》2013,56(2):131-146
Abstract

Calculated multicomponent phase diagrams were used to identify high speed steel (HSS) type alloys having the potential to exhibit enhanced sinter ability. The requirement was for an extensive austenite + carbide + liquid phase field. Of the six tungsten and molybdenum based systems studied, Fe–14Mo–C + 4Cr–8Co systems were potentially the most promising. Appropriate compositions were water atomised and additional alloys prepared by blending annealed powders with graphite powders. Powders were compacted to green densities of about 70% theoretical and then vacuum sintered. Sinterability was assessed in terms of sintered densities and microstructures. Alloys containing Fe–13Mo–1·3C, Fe–14Mo–4Cr–1·3C, and Fe–14Mo– 8Co–4Cr–1·4C were sintered to full density at temperatures as low as 1170°C, 70–150 K lower than for existing HSSs. Sintering windows were 20– 30 K, a significant improvement on existing HSSs. As sintered microstructures consisted of angular M6 C carbides dispersed in martensitic matrixes, which is typical for correctly sintered HSS. Heat treatment response and cutting performance for the sinterable grades were assessed and found to be comparable to existing HSS. The cutting performance of Fe–14Mo– 8Co–4Cr–1·4C tools at 45 and 52·5 m min-1 was superior to both cast wrought M2 and T1 tools of identical geometry. Lower carbon contents resulted in an increase in sintering temperature and a reduction in the width of the sintering window. Higher carbon contents destroyed sinterability, since they led to the formation of M2 C eutectic structures in the undersintered condition. Alloy sinterability was correlated to differential thermal analysis data obtained during heating of powders. The variations in sinterability with alloy composition are discussed with reference to phase diagrams; the degradation in sinterability observed at carbon contents above 1·4% is attributed to the presence of ternary eutectic phase fields. The commercial implications of the relationship between sinterability and alloy composition are discussed.  相似文献   

7.
采用放电等离子烧结技术制备高钪含量Al-Sc合金,利用扫描电子显微镜、能谱仪和X射线衍射仪等设备对球磨前后Al-Sc合金粉末的形貌、相组成以及不同温度快速烧结样品的显微组织结构进行观察和分析,研究烧结温度对Al-Sc合金显微组织的影响。结果表明:球磨后粉末的形状较规则,其颗粒尺寸为25~45mm,并初步实现了机械合金化,除Al、Sc相以外,有少量Al3Sc和AlSc2相生成。放电等离子烧结可实现高钪含量铝钪合金的快速致密化,成功制备出钪含量30%(质量分数)的铝钪合金,通过调整烧结工艺参数,烧结样品的相对密度可达92.19%;当烧结温度高于500℃时,所得样品致密,无孔洞,且无明显晶界;随着烧结温度的提高,Sc相与第二相融合,形成Al3Sc、AlSc2等第二相,存在于合金中,且Al3Sc相呈现逐渐增强的趋势。  相似文献   

8.
《粉末冶金学》2013,56(4):315-321
Abstract

Low porosity powder metallurgy compacts have been manufactured from treated elemental iron and cobalt powders sintered at 1150°C under an H2(g) atmosphere. Their microstructures consist of an interconnected mixed oxide network which encapsulates both the iron and cobalt phases. The production technique employed is an innovative process termed reacto-thermitic sintering (RTS), which leads to near full density and near net shape parts utilising conventional uniaxial compaction and mesh belt furnace practices. The RTS technique relies on microscale exothermic reaction between small quantities of added elemental Al and oxides present on the surface of the bulk powder, together with the bulk powder itself. This results in the production of a transient liquid phase which freezes rapidly and consolidates the compact without slumping. In order to generate an interconnected mixed oxide network, experiments were designed such that the Al powder reacts with the cobalt and the surface of the iron powder which is artificially doped with Fe and Cr oxides.

Differential thermal analysis (DTA) and energy balance calculations revealed that the Al and the oxide coating reaction does not proceed directly. Instead the main contribution to the exothermic process is the reaction between Al and Co/Fe. The system does not exhibit true RTS behaviour and the interconnected network of mixed Al, Cr, and Fe oxides is created by subsequent reaction of Co-Al and Fe-Al intermetallics with the artificial Fe-Cr oxide coating on the Fe. The microstructure obtained exhibits negligible porosity with the metallic particles on the whole fully encapsulated by the oxide.  相似文献   

9.
A developed Ti-35?pct Nb-2.5?pct Sn (wt pct) alloy was synthesized by mechanical alloying using high-energy ball-milled powders, and the powder consolidation was done by pulsed current activated sintering (PCAS). The starting powder materials were mixed for 24 hours and then milled by high-energy ball milling (HEBM) for 1, 4, and 12 hours. The bulk solid samples were fabricated by PCAS at 1073?K to 1373?K (800 °C to 1100 °C) for a short time, followed by rapid cooling to 773?K (500 °C). The relative density of the sintered samples was about 93?pct. The Ti was completely transformed from ?? to ??-Ti phase after milling for 12 hours in powder state, and the specimen sintered at 1546?K (1273 °C) was almost transformed to ??-Ti phase. The homogeneity of the sintered specimen increased with increasing milling time and sintering temperature, as did its hardness, reaching 400?HV after 12 hours of milling. The Young??s modulus was almost constant for all sintered Ti-35?pct Nb-2.5?pct Sn specimens at different milling times. The Young??s modulus was low (63.55 to 65.3 GPa) compared to that of the standard alloy of Ti-6Al-4V (100 GPa). The wear resistance of the sintered specimen increased with increasing milling time. The 12-hour milled powder exhibited the best wear resistance.  相似文献   

10.
Beta-spodumene (Li2O·Al2O3·4SiO2, LAS) powders were prepared by a sol-gel process using Si(OC2H5)4, Al(OC4H9)3, and LiNO3 as precursors and LiF as a sintering aid agent. Dilatometry, X-ray diffraction (XRD), scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and electron diffraction (ED) were utilized to study the sintering, phase transformation, microstructure, and properties of the β-spodumene glass-ceramics prepared from the gel-derived precursor powders with and without LiF additives. For the LAS precursor powders containing no LiF, the only crystalline phase obtained was β-spodumene. For the pellets containing less than 4 wt pct LiF and sintered at 1050 °C for 5 hours the crystalline phases were β-spodumene and β-eucryptite (Li2O·Al2O3·2SiO2). When the LiF content was 5 wt pct and the sintering process was carried out at 1050 °C for 5 hours, the crystalline phases were β-spodumene, β-eucryptite (triclinic), and eucryptite (rhombohedral (hex.)) phases. With the LiF additive increased from 0.5 to 4 wt pct and sintering at 1050 °C for 5 hours, the open porosity of the sintered bodies decrease from 30 to 2.1 pct. The grains size is about to 4 to 5 μm when pellect LAS compact contains LiF 3 wt pct as sintered at 1050 °C for 5 hours. The grains size grew to 8 to 25 μm with a remarkable discontinuous grain growth for pellet LAS compact contain LiF 5 wt pct sintered at 1050 °C for 5 hours. Relative densities greater than 90 pct could be obtained for the LAS precursor powders with LiF > 2 wt pct when sintered at 1050 °C for 5 hours. The coefficient of thermal expansion of the sintered bodies decreased from 8.3 × 10−7 to 5.2 × 10−7/°C (25 °C to 900 °C) as the LiF addition increased from 0 to 5 wt pct.  相似文献   

11.
Using high-resolution optical and scanning electron microscopy with x-ray microanalysis at temperatures of 880 to 920°C, we studied the kinetics and mechanism of the formation of intergranular contacts during sintering of powder-substrate models and also studied the mechanism of shrinkage during sintering of Y-Ba-Cu-O compacts with a stoichiometric composition and two nonstoichiometric compositions, Y0.95Ba2Cu3Oy and Y1.05Ba2Cu3Oy. The formation and the shrinkage of powders of different compositions were found to be described by equations of different degrees, which points to different diffusion sintering mechanisms. Powders with stoichiometric and hyperstoichiometric compositions are sintered by a volume diffusion mechanism, which is controlled by the slowest ion, Y3+. Powders with a substoichiometric composition (Y-0.95) are sintered like a liquid phase, i.e., is controlled by diffusion through liquid or solid layers where new phases with higher diffusion coefficients are formed as a result of segregation effects.  相似文献   

12.
《粉末冶金学》2013,56(2):100-102
Abstract

The performance of diamond/nickel metal matrix composites (MMCs) produced using a novel microwave plasma technique, rapid discharge sintering (RDS), and conventional tube furnace sintering in argon is compared. The MMCs were sintered at temperatures between 850 and 1050°C in both cases. The RDS treatments were carried out at 20 mbar in plasmas containing hydrogen or hydrogen–nitrogen gases. The addition of nitrogen gas to the hydrogen plasma facilitated a substantial increase in composite firing temperatures. A significant reduction in sintering times, to 10 min from several hours, was achieved using the RDS technique. A further advantage of the RDS treatments was the absence of any diamond graphitisation (as detected by X-ray diffraction), which was reflected in higher sintered densities and flexural strength for RDS than for furnace sintering.  相似文献   

13.
在流动氮气氛下,采用高能球磨法制备出了含氮不锈钢粉末,随后利用冷压及烧结工艺获得了含氮不锈钢材料,研究了粉末随球磨时间的增加其物相、粒度、形貌、氮含量的变化及烧结体的显微组织.结果表明:随球磨时间的延长,粉末不断细化,氮含量也呈增加趋势,但球磨超过4h后,粉末不再发生细化,氮含量的增长也变得极其缓慢.烧结体为奥氏体-铁素体双相组织,相对密度达到97%,最终氮含量为(质量分数)0.27%,其拉伸性能优于高压熔炼法制得的含氮不锈钢.  相似文献   

14.
《粉末冶金学》2013,56(15):1-19
Abstract

Changes in surface area of specimens of loose-sintered –300-mesh spherical copper powder, measured by the BET gas-adsorption technique, are given for sintering temperatures of 700,800,900, and 1000°C under furnace atmospheres of hydrogen and argon, for times of 0–24 h. Porosity determinations, using a xylene-impregnation technique, show that the porosity is composed entirely of interconnected pores at 700, 800, and 900°C, connected porosity occurring only after 14 h sintering at 1000°C. Determinations of pore-size distribution are also given, measured by a technique based on a “capillary rise of a liquid in a porous material”. Results indicate that for specimens sintered under a hydrogen atmosphere, an overall increase in pore size occurs, whereas for specimens sintered at 800 and 900°C under an argon atmosphere the size of the majority of the pores remains constant, whilst a small percentage of extremely large pores is developed. Permeability coefficients calculated from surface-area and pore-size distribution data are compared with the experimental values.  相似文献   

15.
This study investigated the influence of the duration of milling on the formation of TiC-reinforced iron composite through carbothermal reduction of a hematite and anatase mixture. Mixtures of hematite, anatase, and graphite powders were mechanically activated in a planetary ball mill in an argon atmosphere with different milling times (0 to 60 hours). X-ray diffraction showed that with increasing milling time, the crystallite size of the hematite decreased to nanometer range, accompanied by an increment in internal strain. Prolonging the milling process increased dislocation density of the as-milled powder. The as-milled powder was consolidated by cold pressing under 100 MPa and sintered in vacuum at 1373 K (1100 °C). High temperature during sintering resulted in the formation of iron and titanium carbide phases as confirmed by X-ray diffraction, scanning electron microscope, and energy dispersive X-ray analysis. Without mechanically activated milling, the reaction forming TiC did not occur during sintering at 1373 K (1100 °C), indicating a reduction in reaction temperature promoted by mechanical milling. An increase in milling time resulted in an increase in sintered density and hardness due to the fineness of the composite powder, together with complete TiC and iron phase formation.  相似文献   

16.
none 《粉末冶金学》2013,56(1):28-33
Abstract

The addition of Cu3P for developing the high strength 465 maraging stainless steel from elemental powders was studied. The sintering parameters investigated were sintering temperature, sintering time and wt-%Cu3P. In vacuum sintering, effective sintering took place between 1300 and 1350°C. The maximum sintered density of 7·44 g cm?3 was achieved at 1350°C for 60 min with 4–6 wt-%Cu3P. More than 6 wt-%Cu3P content and temperature >1350°C caused slumping of the specimens. The sintered specimens were heat treated and a maximum ultimate tensile strength (UTS) of 767 MPa was achieved with 4 wt-%Cu3P content. The maximum hardness of 45·5 HRC was achieved in heat treated condition with 4 wt-%Cu3P content. Above 4 wt-%Cu3P content increase in density was observed whereas the response to heat treatment decreased. Fracture morphologies of the sintered specimens were also reported. A comparison of sintering behaviour and mechanical properties of elemental powders with prealloyed powders was also given in the present study.  相似文献   

17.
Equiatomic CuZrAl and CuZrAlTi medium entropy alloys were designed and synthesized by mechanical alloying and spark plasma sintering technique.The alloying behavior,phase evolutions,microstructures and properties of samples were investigated by X-ray diffraction,differential scanning calorimetry,field emission scanning electron microscopy,microscopy/Vickers hardness testing and electrochemical polarization measurement.The results indicate that the final products of as-milled alloys consist of amorphous phases.Ti addition improves the glass forming ability of as-milled alloys.The as-sintered CuZrAl alloy contains face-centered cubic(fcc)solid solution,Al_(1.05)Cu_(0.95) Zr and AlZr_2 phases at different sintering temperatures.With Ti addition,the as-sintered sample is only composed of intermetallics at 690°C,while fcc1,fcc2 and CuTi3phases are formed at 1100°C.CuZrAlTi-1100°C alloy exhibits the highest hardness value of 1173HV0.2owing to the high sintering density,solid solution strengthening and homogeneous precipitation of nano-size crystalline phase.CuZrAlTi-690°C alloy presents a similar corrosion resistance with304 Lstainless steel in seawater solution and further possesses the lower corrosion rate.  相似文献   

18.
研究了添加不同质量分数FeCrBSi铁基预合金粉末(FeCrBSi)作为烧结助剂对金属注射成形316L不锈钢(316L)烧结性能的影响,通过电子密度计、金相显微镜及洛氏硬度计等仪器分析讨论了烧结制品的烧结密度、金相显微组织及硬度等性能。结果表明:在1360℃烧结时,FeCrBSi与316L形成了超固相线液相烧结,液相的增加有利于烧结致密化,烧结密度随着FeCrBSi质量分数的增加而升高,孔隙度逐渐降低。当FeCrBSi质量分数为3%~5%时,烧结密度达到7.81~7.87 g·cm-3;当FeCrBSi质量分数增至7%时,烧结出现变形。制品硬度随相对密度的上升而提高,在FeCrBSi质量分数为3%时达到最大值(HRB 75),此时力学性能亦表现优异。  相似文献   

19.
The aim of this work is to analyze nonisothermal sintering of zinc titanate ceramics doped with MgO obtained by mechanical activation. Mixtures of ZnO, TiO2, and MgO (0, 1.25, and 2.5%) are mechanically activated for 15 min in a planetary ball mill. Nonisothermal sintering is performed in air for 120 min at 800, 900, 1000, and 1100 °C. Microstructure parameters are revealed from an approximation method. Structural characterization of ZnO-TiO2-MgO system after milling is performed at room temperature using XRPD measurements. The main conclusions are that mechanical activation leads to the particle size reduction, the increase of dislocation density, and lattice strain. Doped zinc titanate samples achieve higher densities after sintering and the diffusion mechanism is dominant during the sintering process. Published in Poroshkovaya Metallurgiya, Vol. 47, No. 1–2 (459), pp. 83–90, 2008.  相似文献   

20.
《粉末冶金学》2013,56(4):513-517
Abstract

In this study, fabrication and mechanical properties of alumina based ceramic matrix nanocomposite reinforced with 15 and 26·6 vol.-%Mo particles were investigated. Alumina–molybdenum nanocomposite powders were prepared by ball milling of Al and MoO3 in an SPEX8000 type ball mill. The powder particles were consolidated by cold uniaxial pressing followed by sintering in vacuum atmosphere at 1300 and 1400°C. The structural evaluation of as milled and sintered samples was studied by X-ray diffraction, differential scanning calorimetry and scanning electron microscopy. Sintered samples were examined by hardness measurements and three-point flexural strength. Results show a significant improvement in flexural strength of Al2O3–Mo nanocomposites in comparison to monolithic alumina and increases by Mo content. During sintering, grain growth and α-Al2O3 to γ-Al2O3 transformation occurred. In addition, an increase in temperature of sintering resulted in higher density and hardness of consolidated nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号